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Several studies have reported that the im-
age quality of high-keV (70–100 keV) MEIs is 
superior for calcific or noncalcified plaque in 
arterial disease8,19 and for metal artifacts9,20,21 

compared with low-keV (40–50 keV) MEIs, 
regardless of the use of noise optimizing 
methods (e.g., MEI plus algorithm). These 
findings are consistent with the highest sub-
jective image quality achieved at 70–80 keV 
for the evaluation of PAD and metal artifacts 

in our study. Symons et al.8 reported low-keV 
images yielding significantly higher arteri-
al plaque volumes than conventional 90/
Sn150-kVp images. Likewise, unsatisfactory 
image quality was observed in 13.6% PAD 
segments at 40 keV and 4.4% PAD segments 
at 50 keV in our study. While small high-con-
trast structures with blooming artifacts can 
be mitigated by optimizing the window 
length/window width,22,23 low-keV images 

with a high contrast can lead to misinter-
pretation or overestimation of PAD calcifica-
tion. Therefore, it may not be appropriate to 
perform PAD evaluation using low-keV MEIs, 
even if using reconstruction algorithms such 
as MEI plus.

Beeres et al.24 reported that MEI plus at 
a low keV (40–50 keV) provides low image 
noise in aortic segments, which is not con-
sistent with our results. This difference may 
be attributed to their evaluation of the aorta 
(the largest vessel) and their neglection of 
small vessels, PAD, and metal artifacts. More-
over, their results indicated lower noise at a 
low keV using MEI plus compared with MEI 
alone. Our study focused on the image qual-
ity of peripheral vessels at low and high keV 
levels using MEI plus in both cases. Here, low 
keV levels provided higher objective image 
noise and lower subjective image quality 
for PAD, venous contamination, and metal 
artifacts than high keV levels. We expect our 
results to be more consistent with clinical 
practice when evaluating PAD using LE-CTA.

Severe venous contamination was ob-
served in the MEIs from 15.1% of the patients 
at 40  keV and from 6.8% of the patients at 
50 keV, while no compromise in diagnostic 
interpretation due to venous contamination 
was determined at 60–80 keV, suggesting 
another disadvantage of low-keV MEIs. Fur-
thermore, while low-keV MEIs provide a high 
contrast, this can lead to the overestima-
tion of small venous contamination. While 
venous contamination at a low keV can be 
reduced by the optimization of the window 
settings, venous contamination may also ad-
versely affect LE-CTA at low keV levels.

This study involves certain limitations. 
First, the images from a small number of 
patients exhibited stent placement on the 
evaluated artery segments. Given that stents 
may also cause artifacts and might reduce 
the image quality, optimizing the keV level 
for evaluation of stent patency and in-stent 
restenosis should be conducted by including 
more patients with arterial stents. Second, 
the CT image sets were acquired from a sin-
gle scanner, and the results may be neither 
generalizable nor directly comparable with 
those obtained from other scanners. Third, 
since the results were not compared to those 
of catheter angiography, which is the refer-
ence standard, the diagnostic accuracy of 
CTA was not sufficiently evaluated. Fourth, 
interobserver agreement was not evaluated, 
except in terms of the overall image quality 
since the analyses were conducted using 
the consensus reading method. Finally, the 

Figure 3. (a-d) The LE-CTA using MEI plus in a 71-year-old man with PAD (body mass index: 21.9 kg/m2; 
CTDIvol: 7.1 mGy; DLP: 936 mGy·cm). The patient presented grade 3 stenosis from left SFA (arrowhead) to 
PA. The 40–50 and 60 keV MEIs were scored 2 and 3, respectively, in terms of diagnostic value in segmental 
image quality in the left PA. Unsatisfactory image quality was observed for vascular calcification at 40–50 
keV, but optimal image quality was achieved at 70–80 keV (score 4). LE-CTA, lower extremity computed 
tomography angiography; MEIs, monoenergetic images; PAD, peripheral arterial disease; CTDI, CT volume 
dose index; DLP, dose-length product; SFA, superficial femoral arterie; PA, popliteal arteries; keV, kiloelectron 
volt.
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Figure 4. (a-e) The LE-CTA using MEI plus in an 80-year-old woman (body mass index: 23.8 kg/m2; CTDIvol: 7.8 mGy; DLP: 956 mGy·cm) with PAD in both SFAs, 
both PAs, and both PTAs as well as grade 3 stenosis. Metal artifacts caused by total hip replacement affect the right SFA evaluation, and their effect gradually 
decreases in images from 40 to 80 keV. The diagnostic value scores of segmented image quality were 1, 2, 3 and 4 at 40, 50, 60–70, and 80 keV, respectively. LE-CTA, 
lower extremity computed tomography angiography; MEIs, monoenergetic images; CTDI, CT volume dose index; DLP, dose-length product; PAD, peripheral arterial 
disease; SFA, superficial femoral arterie; keV, kiloelectron volt.

Table 3. Quantitative analysis of MEI attenuation and noise in five image sets

Parameter (keV)  40 50 60 70 80

Quantitative analysis 
(Hounsfield unit)

Attenuation

Infrarenal aorta 1547.2 ± 348.9 1031.2 ± 233.3 725.8 ± 162.8 526.1 ± 115.6 427.6 ± 290.2

Right CIA 1513.9 ± 349.5 1021.0 ± 235.6 753.8 ± 162.0 541.9 ± 119.9 421.4 ± 91.5

Left CIA 1522.4 ± 341.0 1027.2 ± 228.8 724.6 ± 160.5 540.4 ± 119.4 416.9 ± 91.0

Noise

Infrarenal aorta 46.5 ± 14.6 31.0 ± 9.9 21.6 ± 6.9 16.3 ± 7.8 12.3 ± 3.7

Right CIA 47.2 ± 34.3 32.3 ± 24.4 22.9 ± 18.2 17.4 ± 14.4 14.3 ± 11.9

Left CIA 46.8 ± 29.1 34.8 ± 38.3 23.8 ± 18.8 18.2 ± 15.0 14.5 ± 12.3

Data shown are mean ± standard deviation. MEIs, monoenergetic images; keV, kiloelectron volt; CIA, common iliac artery.
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data corresponding to a level of >90 keV, 
MEIs with polyenergetic images, or other MEI 
blending factors were not compared. Further 
studies including polyenergetic images and 
various combinations of MEIs should be con-
ducted.

In conclusion, among the MEIs at differ-
ent keV levels, the 70–80 keV MEIs obtained 
higher diagnostic interpretation scores in 
the overall and segmental subjective im-
age quality evaluations that also consid-
ered metal artifacts. The image quality at 
60–80 keV was more acceptable in terms 
of venous contamination since the higher 
contrast in low-keV images may lead to the 
overestimation of small venous contamina-
tion.
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