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Application of deep learning and radiomics in the prediction of 
hematoma expansion in intracerebral hemorrhage: a fully automated 
hybrid approach

PURPOSE
Spontaneous intracerebral hemorrhage (ICH) is the most severe form of stroke. The timely assess-
ment of early hematoma enlargement and its proper treatment are of great significance in curbing 
the deterioration and improving the prognosis of patients with ICH. This study aimed to develop an 
automated hybrid approach to predict hematoma expansion in ICH.

METHODS
The transfer learning method was applied to build a hybrid model based on a convolutional neural 
network (CNN) to predict the expansion of hematoma. The model integrated (1) a CNN for auto-
mated hematoma segmentation and (2) a CNN-based classifier for hematoma expansion predic-
tion that incorporated both 2-dimensional images and the radiomics features of the 3-dimensional 
hematoma shape.

RESULTS
The radiomics feature module had the highest area under the receiver operating characteristic 
curve (AUC) of 0.58, a precision of 0, a recall of 0, and an average precision (AP) of 0.26. The ResNet50 
and Inception_v3 modules had AUCs of 0.79 and 0.93, a precision of 0.56 and 0.86, a recall of 0.42 
and 0.75, and an AP of 0.51 and 0.85, respectively. Radiomic with Inception_v3 and Radiomic with 
ResNet50 had AUCs of 0.95 and 0.81, a precision of 0.90 and 0.57, a recall of 0.79 and 0.17, and an 
AP of 0.87 and 0.69, respectively.

CONCLUSION
A model using deep learning and radiomics was successfully developed. This model can reliably 
predict the hematoma expansion of ICH with a fully automated process based on non-contrast 
computed tomography imaging. Furthermore, the radiomics fusion with the Inception_v3 model 
had the highest accuracy.
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Spontaneous intracerebral hemorrhage (ICH), the most severe form of stroke, accounts 
for 10%–15% of strokes in high-income nations and 20%–50% in developing nations.1 
Compared with ischemic stroke, ICH is associated with poor prognostic outcomes, with 

a mortality rate of 40% at 1 month and a disability rate of 80% in survivors.2-4 Generally, ICH 
prognosis is influenced by many factors, including baseline volume and hematoma location, 
Glasgow Coma scale score, intraventricular hemorrhage, and age.5-7 Of these factors, hema-
toma volume is the only one that is controllable and dynamic.5 Clinical studies have shown 
that 33% of patients with ICH develop early hematoma enlargement within 24 h of ICH on-
set.8-10 Early hematoma enlargement in patients with ICH is independently correlated with 
poor prognostic outcomes and death.3,8,11,12 Therefore, the timely assessment of early hemato-
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ma enlargement and appropriate treatment 
are crucial in improving the outcomes of pa-
tients with ICH.

Recent studies have identified numerous 
radiological features for predicting hemato-
ma enlargement after ICH. For example, the 
computed tomography angiography (CTA) 
spot sign is a powerful predictive method of 
hematoma enlargement.13-15 However, clin-
ical applications have shown that some pa-
tients are allergic to the contrast agents used 
in CTA, and patients with renal insufficiencies 
are relatively contraindicated.16-18 By contrast, 
non-contrast computed tomography (NCCT) 
serves as the first choice for diagnosis of pa-
tients with acute stroke. New markers based 
on NCCT, such as blend,19 swirl,20 black hole,21 
and island,22 as well as satellite signs,23 can 
reflect the density and shape heterogeneity 
of hematomas with high specificity. There-
fore, they have been proposed as alternative 
predictors of hematoma enlargement in clin-
ical settings.24-26 However, these predictive 
indicators are only used for qualitative or 
semi-quantitative analyses and have relative-
ly low sensitivity and accuracy in predicting 
hematoma enlargement.25 Alternative quan-
titative methods with automated execution, 
which may have superior predictive power, 
are still needed.

Radiomics is a promising quantitative 
method that has performed excellently in 
various biomedical fields, where it has been 
used to extract large numbers of quantita-
tive characteristics from conventional medi-
cal imaging.27,28 As well as being extensively 
applied in oncology studies, radiomics has 
recently been used for the prediction of he-
matoma enlargement after ICH based on 
NCCT imaging. Although these models ex-
hibit positive predictive performance,29-33 

only traditional or feature-based machine 
learning (ML) was utilized for the studies. 
Deep learning is an automatic method that 
can skip object segmentation, feature selec-
tion, and extraction from segmented objects 
to identify ‘‘effective features.’’ Since it allows 
the whole process to be mapped from raw 
input images to final classifications and can 
exclude the requirement for hand-crafted 

features, deep learning is also referred to as 
end-to-end ML.27

Convolutional neural networks (CNNs) 
based on deep learning are increasingly 
being used worldwide with promising out-
comes. However, developing CNN-based 
methods requires large training datasets, 
which is challenging and laborious in clini-
cal settings. Two approaches partially over-
come this challenge. The first involves data 
augmentation, which utilizes affine trans-
formations, including translation, scaling, 
and rotation, to produce more data from 
the available data. The other approach in-
volves transfer learning, which is promising 
in medical image analysis.34 In this study, we 
developed a CNN-based hybrid model using 
a data augmentation and transfer learning 
method for predicting hematoma expansion 
by integrating the following: (1) a CNN for 
automated hematoma segmentation, and 
(2) a CNN-centered classifier for hematoma 
expansion prediction that incorporates 2-di-
mensional (2D) images as well as radiomics 
features for the 3-dimensional (3D) hemato-
ma shape.

Methods
This was a retrospective study permitted 

by the Medical Ethics Committee of Xianning 
Central Hospital (no: 20211126011), and the 
informed consent was waived.

Patients and image acquisition

Patients with spontaneous ICH diagnosed 
by the radiologist and admitted to the hospi-
tal between September 2017 and September 
2021 were enrolled in this study. The inclu-

sion criteria were as follows: (1) patients aged 
>18 years; (2) patients who had received 
baseline NCCT within 24 h of symptomatic 
onset and follow-up computed tomography 
(CT) at ≤72 h. In this study, 506 patients met 
the inclusion criteria. The exclusion criteria 
were as follows: (1) patients diagnosed with 
trauma, aneurysm, vascular malformation, 
venous sinus embolism, or tumor-induced 
cerebral hemorrhage (151 cases); (2) patients 
with emergency surgery before CT review 
(53 cases); (3) patients with surgical inter-
vention during the 72-h observation period, 
even in the absence of hematoma expansion 
(15 cases); (4) patients whose CT images re-
vealed artifacts. In this study, two different 
CT scanners were used to minimize variabili-
ty in image acquisition parameters (7 cases). 
Following the exclusion criteria, 226 cases 
were excluded from the study. Finally, 280 
cases were included in this study. The origi-
nal CT image of the patients with ICH was re-
constructed into a standardized image with a 
thickness of 1.0 mm and a spacing of 0.7 mm 
before being exported from the picture ar-
chiving and communication system (PACS).

Study design

The model architecture is shown in Figure 
1. Briefly, the hybrid model comprised two 
deep learning models (models 1 and 2), with 
an automated pipeline between the two 
models. Model 1 was developed first for the 
automated generation of hematoma masks 
based on NCCT images. A hybrid classifier 
model (model 2) was then trained for the 
prediction of hemorrhage expansion based 
on radiomics and CNN features extracted 
from the NCCT images and hematoma masks 
in model 1.

Main points

• A model using deep learning and radiomics 
was successfully developed.

• The model was based on non-contrast com-
puted tomography imaging.

• The model predicts hematoma expansion 
of an intracerebral hemorrhage with a fully 
automated process.

Figure 1. Fully automated hybrid model for predicting ICH expansion. ICH, intracerebral hemorrhage; NCCT, 
non-contrast computed tomography; ROI, region of interest; CNN, convolutional neural network; SVM, 
support vector machine.
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Image processing

The Siemens 64-slice CT (SOMATOM go.Top, 
Henkestr., Erlangen, Germany) scan parame-
ters were as follows: positioning image, 140 
kV, 60 mA; spiral scanning parameters, 120 kV, 
effective mAs 230, pitch 0.55, layer thickness 5 
mm, layer spacing 5 mm. Before exporting the 
image from the PACS (USA), the original image 
was reconstructed into a standardized image 
with a thickness of 1.0 mm and a spacing of 0.7 
mm. The CT images were exported from PACS 
in the Digital Imaging and Communications in 
Medicine format and were transformed into the 
Neuroimaging Informatics Technology Initiative 
format. Images were set to values of -1,024 and 
3,052 HU. Image analysis was performed using 
the Ubuntu 18.04 operating system (London, 
UK) and Python (USA). First, all input sequences 
were acquired in a 512 × 512 field. Next, the net-
work output was set to only whole hematoma 
segmentation. After determining the hemato-
ma volume and matching the original residual 
network, the original NCCT image and segmen-
tation file (128 × 128 voxel) were reconstructed.

Automated segmentation of the hemor-
rhage (model 1)

DeepBleed is an open-source tool for 
quick hemorrhage segmentation.35 This au-
tomated deep neural network model pre-
processes NCCT scans (including skull strip-
ping), segments the hemorrhage area, and 
outputs a binary hemorrhage mask. Training 
and validation of this model using data from 
the Minimally Invasive Surgery Plus Alteplase 
for Intracerebral Hemorrhage Evacuation 
trial showed that the dice similarity coeffi-
cient, which evaluates spatial overlap extent 
between ground-truth segmentation by 
radiologists and the automatic model, was 
0.919.35,36 Contrary to manual segmentation, 
this model can rapidly and precisely segment 
ICH with a high level of agreement. To adapt 
it to this study, the code was partially modi-
fied and an interface was added for the auto-
mated calculation of hematoma volume.

Labels

Previous studies have defined hemato-
ma expansion as an outright volumetric ICH 
growth of >6 mL or an increase of >33% from 
the initial CT scan to the follow-up CT scan.3,12 

The binary label (negative or positive ICH ex-
pansion) was masked for each included study.

Hybrid classifier model for hematoma ex-
pansion prediction (model 2)

The hybrid model for ICH hematoma ex-
pansion combines well-known radiomics 

characteristic analysis and CNNs. Radiomics 
characteristic analysis was used to determine a 
wide range of researcher-defined quantitative 
features including shape, intensity, and texture 
of regions of interest on images. The CNN fea-
tures were extracted based on CNN training.

The radiomics characteristic was extract-
ed using the Python “pyradiomics” package 
(https://www.radiomics.io/pyradiomics.
html).37 The transformations were included 
with gradient, wavelet, original, square, ex-
ponential, logarithm, square root, and local 
binary pattern 3D. After image transforma-
tion, radiomics features were extracted.

The CNN model was executed using the 
well-known Inception_v338 and ResNet50 
modules to extract comprehensive 2D image 
information from the hematoma. Axial slices 
with maximum hematoma areas were auto-
matically selected as “maximum ICH image”, 
and the other two images were extracted 
from three upper (+3) and three lower (−3) 
slices from the maximum ICH image. For 
small ICHs with a volume <1 cm, the upper 
and lower slices may not be within the he-
matoma range; the extracted features after 
separation were therefore the same and did 

not affect the data results. Hematomas <1 
cm are often negative. Typically, CNN fea-
tures are extracted from the output of fully 
connected last hidden layers.39 During CNN 
training, “warm-up training” of the convolu-
tional residual network was achieved using 
image inputs to identify relevant imaging 
features. The weights of the pretrained con-
ventional ResNet50 and Inception_v3 mod-
ules were imported into model 2 and set as 
“non-trainable”. Meanwhile, data augmenta-
tion was performed by rotating, flipping, and 
resizing the training images to enrich the 
training data. This regular operation reduced 
the overfitting risk and boosted a classifier’s 
performance. The network was optimized 
using the Adam optimizer (beta1: 0.9, beta2: 
0.999, initial learning rate: 0.0001), with 
an L2 penalty of 0.01, batch size of 50, and 
cross-entropy cost function. The maximum 
training epoch was set to 100, and the model 
was saved when the maximum accuracy was 
achieved on the testing set. The CNN mod-
els were then implemented using the “keras” 
and “tensorflow” packages and trained on an 
AMD Ryzen Threadripper 2970WX processor 
with 48 Gb RAM (USA).

Figure 2. Top features selected.

Figure 3. Schematic of 2D and 3D image feature fusion. CNN, convolutional neural network; SVM, support 
vector machine.
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The features selected are shown in Fig-
ure 2. The feature-level fusion approaches 
were used to fuse the features to collect 
complementary information from radiomics 
and CNNs and improve diagnostic accuracy 
(Figure 3).40 Following the fusion pipeline, 
sequential forward feature elimination was 
chosen for feature selection, which was able 
to automatically identify the subset of fea-
tures that are highly appropriate to the prob-
lem. The grid search parameters consisted of 
many features that account for data complex-
ity and separability. Next, the “support vector 
machine” was used as the ML model for clas-
sification. The training set was divided into 
two stratified sets for cross-validation, and 
the estimator with the best average accura-
cy in the cross-validation was chosen as the 
best estimator. Subsequently, 100 non-ex-
panding (NEG-ICH) and expanding (POS-ICH) 
cases were randomly selected as the test set, 
and the remaining cases were used as train-
ing and validation sets. The radiomics-spe-
cific reporting [checklist for evaluation of 
radiomics research (CLEAR)41 and radiomics 
quality score (RQS)42] are presented as Sup-
plementary Materials S1 and S2. Thirty-seven 
items were addressed in the CLEAR checklist, 
and the RQS score was 10 (27.78%).

Statistical analysis

Model performance was evaluated by 
metrics. The area under the receiver oper-
ating characteristic curve (AUC) was deter-
mined to assess the ability of a classifier to 
distinguish between classes. The confusion 
matrix (CM) denotes instances in a predict-
ed class, whereas columns denote instanc-
es in an actual class. Precision indicates the 
accuracy of the classifier in identifying pos-
itive samples. Recall indicates the classifier’s 
ability to find all positive samples. The area 
under the precision-recall curve is the aver-
age precision (AP). Python software with the 

“Scikit-Learn” package (https://scikit-learn.
org/stable/) was used for statistical analyses.

Results
The schematic of patient recruitment 

is shown in Figure 4. There were 280 cases 
included in the analysis, of which 180 were 
randomly grouped into the training and val-
idation sets (43 POS-ICH cases and 137 NEG-
ICH cases) and 100 were randomly grouped 
into the test sets (24 POS-ICH cases and 76 
NEG-ICH cases). Model 1, which automati-
cally labeled the hematoma area and calcu-
lated the hematoma volume (Figure 5), was 
able to efficiently mask the hematoma. The 
213 NEG-ICH cases and 67 POS-ICH cases 
were then classified and labeled. The NEG-
ICH group had a male/female ratio of 153:60, 
an average age of 64.4 years (range, 50–85 
years), and a hematoma volume ranging 
from 0.271 to 79.6 mL. The POS-ICH group 
had a male/female ratio of 37:30, an average 

age of 68.7 years (range, 53–89 years), and 
a hematoma volume ranging from 0.464 to 
107.01 mL (Table 1a). These features were 
not markedly different between the training 
and testing datasets. The baseline features of 
the training, validation, and testing sets are 
shown in Table 1b.

In model 2, the “PyRadiomics” package 
was used for the extraction of shape-based 
characteristics from the hematoma masks, 
with some of the features extracted from 
the library being automatically deprecated. 
For each case, 107 features belonging to 
“Shape Features”, “First Order”, “Gray Level 
Dependence Matrix”, “Gray Level Co-occur-
rence Matrix”, “Gray Level Size Zone Matrix”, 
“Gray Level Run-Length Matrix”, and “Neigh-
borhood Gray Tone Difference Matrix” were 
obtained using PyRadiomics. The results in 
the test dataset with the optimal estimator 
are presented in Figure 6 and Table 2. The 
radiomics feature module had the highest 

Figure 4. Flow diagram of ICH patient selection. ICH, intracerebral hemorrhage; CT, computed tomography; 
POS-ICH, positive hematoma expansion in intracerebral hemorrhage; NEG-ICH, negative hematoma 
expansion in intracerebral hemorrhage.

Table 1. (a, b) Baseline clinical features of included participants

a. NEG-ICH vs. POS-ICH

Variables NEG-ICH POS-ICH P value*

Gender (male/female) 153/60 37/30 0.24

Age (years) [median (range)] 64.4 (50–85) 68.7 (53–89) 0.58

Hematoma volume (mL) 0.271–79.6 0.464–107.01 0.48

b. Training and validation vs. test sets

Variables Training and validation sets Test sets P value*

NEG-ICH POS-ICH NEG-ICH POS-ICH NEG-ICH POS-ICH

Gender (male/female) 98/39 24/19 55/21 13/11 0.27 0.21

Age (years) [median (range)] 64.3 (50–86) 68.4 (53–86) 64.5 (52–88) 68.9 (56–89) 0.61 0.56

Hematoma volume (mL) 0.271–79.3 0.464–106.02 0.273–79.6 0.466–107.01 0.50 0.45

*P < 0.05. NEG-ICH, negative hematoma expansion in intracerebral hemorrhage; POS-ICH, positive hematoma expansion in intracerebral hemorrhage. 
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AUC of 0.58, a precision of 0, a recall of 0, and 
an AP of 0.26. The CM showed that all POS-
ICH cases were identified as NEG-ICH cases, 
indicating that this module could not detect 
hematoma expansion.

For CNN features, the ResNet50 and In-
ception_v3 modules were compared using 
various CNNs as feature extractors for the 
optimization of predictive performance, 
and the results of the multi-slice CNN per-
formances in test sets are shown in Figures 
7 and 8 and Table 2. The ResNet50 and Incep-

tion_v3 modules had AUCs of 0.79 and 0.93, 
a precision of 0.56 and 0.86, a recall of 0.42 
and 0.75, and an AP of 0.51 and 0.85, respec-
tively.

Next, the radiomics and CNN features 
were fused to assess if the predictive capa-
bility could be improved. The CNN features 
were extracted from the last hidden layer of 
images before outputting (dimensional fea-
ture vectors, 4,096 for Inception_v3, 6,144 for 
ResNet50). The results of the two fusion mod-
els are shown in Figures 9 and 10 and Table 2. 

Radiomic with Inception_v3 and Radiomic 
with ResNet50 had AUCs of 0.95 and 0.81, a 
precision of 0.90 and 0.57, a recall of 0.79 and 
0.17, and an AP of 0.87 and 0.69, respectively. 
A summary of the analysis is included in doi: 
10.5281/zenodo.10570452. The current anal-
yses showed that the radiomics fusion with 
the Inception_v3 model had the highest 
accuracy, indicating that improved perfor-
mance was obtained relative to the radiom-
ics and CNN modules alone.

Discussion
In this study, we developed a hybrid 

model that incorporates data from 2D he-
matoma signal intensities and 3D hemato-
ma shapes into one CNN, along with CNN-
based automated hematoma segmentation 
and a fully automated pipeline, without any 
operator-dependent processes. The devel-
oped automated hybrid model can predict 
hematoma expansion prediction with high 
AUC (0.95), precision (0.90), recall (0.79), and 
AP (0.87) values. This strategy would also im-
prove understanding of the synergistic na-
ture of fusion classification using CNN-based 
transfer learning and radiomics features. 
The data obtained in this study highlight 
improved classification performance when 
using fusion strategies, radiomics-related 
features, or features extracted from CNN 
transfer learning alone. The performance of 
the CNN model using the Inception_v3 al-
gorithm based on a training dataset of 180 
ICH cases for the prediction of hematoma 
expansion achieved an AUC of 0.93. With the 
addition of radiomics features, the hybrid 
model demonstrated a small improvement 
in the prediction performance. The perfor-
mance was moderately effective based on 
a relatively small case series. The model had 
both radiological features and internal CNN 
features, and, therefore, the results were bet-
ter.

Previous studies on the prediction of ICH 
expansion can be divided into two catego-
ries. The first category is a prediction mod-
el based on radiological characteristics, 
which are subjectively judged by image 
signs, including blend signs,19 swirl signs,20 

black hole signs,21 island signs,22 and sat-
ellite signs.23 These signs were combined 
with clinical factors to develop a predictive 
score table, such as the BAT score table,43 

NAG score,44 HEAVN score,45 HEP score,46 
the 9-point score,47 and the BRAIN score.48 
Generally, these studies differ in indicators 
in their predictive scoring systems, but their 
radiological features may be associated 
with low sensitivity and low-quality results, 

Figure 5. Regions of interest were auto-segmented (indicated in red).

Figure 6. Predictive performance of the radiomics feature module. AP, average precision; AUC, area under 
the receiver operating characteristic curve.

Figure 7. Predictive performance of the CNNs feature module with ResNet50. CNN, convolutional neural 
network; AP, average precision; AUC, area under the receiver operating characteristic curve.

Table 2. Predictive performance of each module

Module AUC Precision Recall AP

Radiomics 0.58 0 0 0.26

ResNet50 0.79 0.56 0.42 0.51

Inception_v3 0.93 0.86 0.75 0.85

Radiomic + Inception_v3 0.95 0.90 0.79 0.87

Radiomic + ResNet50 0.81 0.57 0.17 0.69

AUC, area under the receiver operating characteristic curve; AP, average precision.
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as these visual assessments are susceptible 
to inter-observer variability. Furthermore, 
previous evaluation methods for ICH expan-
sion were separated but not mixed. Howev-
er, the relationship between predictors and 
hematoma enlargement is complex, which 
would make accurate predictions of hema-
toma enlargement challenging. As ML can 
potentially overcome these challenges, an-
other prediction model based on radiomics 
has emerged. Previously, most prediction 
models using radiomics were based on 
traditional ML, which requires manual he-
matoma segmentation, feature extraction, 
screening, and reduction.30-33,49,50 Although 
these models have effective predictive per-
formance, the execution is not fully auto-
mated. Moreover, operator-dependent pro-
cesses, including manual segmentation, are 
laborious and could cause interrater vari-
ability, which limits their clinical applica-
tions. Deep learning strategies, particularly 
CNN, have been used to solve this problem. 
CNNs and radiomics analyses are typical 
quantitative methods for image analysis 

and can extract high-dimensional as well 
as abstract numeric data beyond what is 
perceivable through visual image analysis. 
Thus, in this study, we first used deep learn-
ing to develop a prediction model in which 
hematoma segmentation and feature ex-
traction were automated, while the radio-
mics and CNN features were merged into a 
hybrid prediction model. This fusion model 
can combine complementary features and 
improve robustness by reducing the uncer-
tainty of each feature or mode.

Although the radiomics feature mod-
ule had a high AUC (0.58), 0 accuracy, and 
0 recall, the predictive performance of fea-
ture-based radiomics in this study was not as 
effective as that reported in previous studies. 
This was probably because of a lack of clinical 
information in the current study. Generally, 
previous studies obtained various patients’ 
features, including demographic factors, 
neurological status, and laboratory test pa-
rameters. However, these characteristics may 
not be accessible at all hospitals and may not 
cover the full spectrum of predictive infor-

mation that can be acquired from patients. 
Notably, the mixed model in this study has 
effective predictive performance without 
clinical information, indicating that it has 
greater clinical feasibility.

There are some limitations to this study. 
First, it is a single-center retrospective study 
with a small sample size. Further investiga-
tions with large sample sizes from multiple 
centers are required to verify the current 
results. In this study, we used CNNs to ex-
tract high-level features using two different 
modules (Inception_v3 and ResNet50). Three 
axial slices were selected to yield three in-
dividual samples per patient. Therefore, the 
convolutional residual network and the CNN 
classifier were trained on 540 (180 × 3) sam-
ples and tested on 300 (100 × 3) samples. 
Second, even though CNNs exclude the pro-
cesses of feature computation as well as se-
lection using convolutions and can directly 
capture key characteristics from the images, 
signal intensity-based CNNs cannot directly 
capture 3D shapes of hematoma. Further-
more, model 2 can integrate a hematoma 
image and shape it into one CNN, but the 
developed model is not end to end. Model 
1 for hematoma segmentation and model 
2 for ICH status prediction were separately 
trained and pooled. However, the image pre-
processing, models 1 and 2, and the pipeline 
in between are completely based on open-
source modules that can be integrated into 
a Python-based pipeline, and a test sample 
can be automatically run through each step 
of our model.

In conclusion, we developed a model 
using deep learning and radiomics that can 
reliably predict hematoma expansion in ICH 
in a fully automated process based on NCCT 
imaging. Hematoma expansion was the only 
indicator of ICH outcome, and prognostic 
factors, such as neurological deterioration 
and mortality, were not included. Due to its 
high reproducibility and generalizability, this 
model can be applied more widely in pre-
dicting prognosis in acute ICH.
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