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PURPOSE
Osteoporosis is the systematic degeneration of the human skeleton, with consequences ranging 
from a reduced quality of life to mortality. Therefore, the prediction of osteoporosis reduces risks 
and supports patients in taking precautions. Deep-learning and specific models achieve highly 
accurate results using different imaging modalities. The primary purpose of this research was to 
develop unimodal and multimodal deep-learning-based diagnostic models to predict bone min-
eral loss of the lumbar vertebrae using magnetic resonance (MR) and computed tomography (CT) 
imaging. 

METHODS
Patients who received both lumbar dual-energy X-ray absorptiometry (DEXA) and MRI (n = 120) or 
CT (n = 100) examinations were included in this study. Unimodal and multimodal convolutional 
neural networks (CNNs) with dual blocks were proposed to predict osteoporosis using lumbar ver-
tebrae MR and CT examinations in separate and combined datasets. Bone mineral density values 
obtained by DEXA were used as reference data. The proposed models were compared with a CNN 
model and six benchmark pre-trained deep-learning models.

RESULTS
The proposed unimodal model obtained 96.54%, 98.84%, and 96.76% balanced accuracy for MRI, 
CT, and combined datasets, respectively, while the multimodal model achieved 98.90% balanced 
accuracy in 5-fold cross-validation experiments. Furthermore, the models obtained 95.68%–97.91% 
accuracy with a hold-out validation dataset. In addition, comparative experiments demonstrated 
that the proposed models yielded superior results by providing more effective feature extraction in 
dual blocks to predict osteoporosis. 

CONCLUSION
This study demonstrated that osteoporosis was accurately predicted by the proposed models using 
both MR and CT images, and a multimodal approach improved the prediction of osteoporosis. With 
further research involving prospective studies with a larger number of patients, there may be an 
opportunity to implement these technologies into clinical practice.
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Osteoporosis is a systemic skeletal degenerative disease characterized by the deterio-
ration of the microstructure of the bone tissue and low bone mineral density (BMD), 
with a consequential increase in bone fragility and susceptibility to fracture.1 The ma-

jor complication of osteoporosis is fragility fractures that lead to morbidity, mortality, and 
decreased quality of life. The prevalence of the disease is rising as the proportion of the el-
derly population increases.2 It was expected that by 2020, in the United States, approximately 
12.3 million individuals older than 50 would have osteoporosis.3 Tuzun et al.4 showed that 
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the prevalence of osteoporosis among Turk-
ish citizens increases with age, with 3%-4% 
affected at the age of 50 and more than 30% 
affected by the age of 80. These numbers are 
predicted to have increased by 64% (870,000 
men and 1,841,000 women) in 2035.4 

Accordingly, screening for osteoporosis 
is clinically advisable for fracture preven-
tion. There are several imaging techniques, 
including radiography, ultrasonography, 
low-dose computed tomography (CT), and 
dual-energy X-ray absorptiometry (DEXA), 
which, with its negligible dose of radiation, is 
considered the gold standard imaging tech-
nique for the diagnosis of osteoporosis.5 Re-
cent research concluded that lumbar spine 
magnetic resonance imaging (MRI) and CT 
used for lower-back pain could be used to 
predict osteoporosis.6 MRI provide accurate 
information on tissue structure, and CT im-
ages allow researchers to observe the ana-
tomical structure of the vertebrae.7 However, 
the advantages of using artificial intelligence 
(AI) in diagnosing osteoporosis have been 
rarely studied.8

AI techniques have gained significant 
ground in the field of computer vision, par-
ticularly in medical applications.9,10 As a re-
sult, the use of AI has become common in the 
public health sector and now significantly 
impacts every aspect of early prediction and 

primary care.11,12 Since deep-learning models 
can detect, learn, and predict indistinct and 
fuzzy patterns, they provide fast, effective, 
and reliable outcomes for the considered 
problem domain.13 Furthermore, the synthe-
sis and analysis of different images and data 
types have enabled AI and deep learning 
to make remarkable improvements in com-
plex data environments in which the human 
capacity to identify high-dimensional rela-
tionships is limited in terms of processing a 
higher number of data and computational 
time.14 However, the modification of recent 
deep-learning models and the proposal of 
particular architectures by considering the 
basic characteristics of specific applications 
has led to the achievement of more accurate 
results.

Osteoporosis prediction, or identifying 
the presence of osteoporosis, is one of the 
primary aims of diagnostic imaging. Several 
types of AI research have been performed for 
this purpose,15 and different imaging modal-
ities and metadata have been considered in 
these studies. Xu et al.16 considered micro-CT 
images for osteoporosis diagnosis. The classi-
fication followed several image pre-process-
ing steps by support vector machine and 
k-nearest-neighbor algorithms. Lim et al.8 
performed machine-learning analyses using 
DEXA features and abdominopelvic CT to 
predict osteoporosis prevalence. To classify 
osteoporosis, Yamamoto et al.17 trained five 
pre-trained convolutional neural network 
(CNN) models using hip radiographs and pa-
tient clinical covariates. Similarly, Jang et al.18 
proposed a deep neural network to predict 
osteoporosis using hip radiography images. 
Liu et al.19 proposed a three-layered hier-
archical model to distinguish osteoporosis 
and normal BMD using patients’ clinical data. 
In that study, a logistic regression model 
achieved superior results by achieving re-
ceiver operating characteristics (ROC) area 
under the curve (AUC) scores of 0.818–0.962 
for three layers.

All the abovementioned studies achieved 
reasonable and promising results. However, 
the use of MR and CT images in predicting 
osteoporosis with deep learning requires 
more investigation. In addition, the impact of 
the use of multimodal deep-learning models 
in diagnosing osteoporosis has not been 
studied adequately.

Based on this information, the current 
study aimed to accurately distinguish oste-
oporosis and normal BMD using different 
imaging modalities, including CT and MRI, 

to support and assist radiologists in clinical 
diagnoses. For this purpose, we considered 
two primary datasets, including lumbar CT 
and MRIs of patients who received both lum-
bar DEXA and MRI examinations or CT scans. 
We proposed a dual-block CNN-based model 
with different filter sizes and pooling opera-
tions and performed several experiments on 
the considered datasets to achieve a high-ac-
curacy diagnosis of osteoporosis. The effica-
cy of different modalities on osteoporosis 
prediction was analyzed by considering CT 
and MRI scans in separate, combined, and 
multimodal implementations in unimodal 
and multimodal experiments. The proposed 
unimodal and multimodal CNN models were 
compared with six pre-trained and tradition-
al CNN models.

Methods

Dataset and study population

Study group

Lumbar DEXA examinations of 1,800 
patients obtained between January 2018 
and March 2021 from the Near East Univer-
sity Hospital’s Radiology Department were 
evaluated retrospectively. A total of 1,554 
patients with T-scores higher than −1 at lev-
els L1–L4 and patients with severe scoliosis 
or lumbar deformity, spondyloarthrosis, in-
flammatory diseases (tuberculosis, brucella, 
ankylosing spondylosis, etc.), tumoral lesions 
(leukemia, lymphoma, multiple myeloma, 
vertebral metastasis, etc.), or a history of 
lumbar stabilization surgery were excluded 
from the study. Spondyloarthrosis can cause 
sclerosis at the vertebral plateau and osteo-
phyte formations, which are bony spurs with 
high density. These lesions can cause higher 
BMD calculations and errors at DEXA exam-
inations. More accurate data was aimed by 
excluding this patient group. A total of 246 
patients with T-scores lower than −1 at levels 
L1–L4 were re-evaluated for the presence of 
recorded lumbar MRI or CT images obtained 
within six months.

The MRI study group consisted of 62 
patients (2 males, 60 females), with ages 
ranging between 44 and 86 years [mean: 
65, standard deviation (SD): +/−9.9]. A to-
tal of 535 T1-weighted sagittal MRI of these 
patients were included in the study. The 
study group for CT consisted of 50 patients 
(3 males, 47 females), with ages ranging be-
tween 46 and 83 years (mean: 68, SD: +/−8.7); 
562 sagittal reformatted CT images of these 
patients were used in the study.

Main points

• This study considered two primary datasets 
that included magnetic resonance image 
(MRI) and computed tomography (CT) im-
ages and proposed specifically designed 
convolutional neural network (CNN) models 
for osteoporosis prediction. The proposed 
unimodal and multimodal CNN models in-
cluded two parallelized blocks to extract 
and combine the loss of individual blocks 
based on the characteristics of lumbar scan 
images.

• The proposed unimodal CNN model out-
performed the other models in predicting 
osteoporosis using MRI and CT images sep-
arately and obtained 96.54% and 98.84% 
balanced accuracy, respectively. Superior 
results were obtained using the proposed 
multimodal CNN model, and 98.90% bal-
anced accuracy was achieved. Furthermore, 
a hold-out test set was used to test the mod-
els, and the proposed models outperformed 
the other considered models. Similarly, a su-
perior result was obtained by the multimod-
al model (97.91%).

• The obtained results showed that the devel-
oped deep-learning models could produce 
accurate results in osteoporosis prediction 
using different imaging techniques. 
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Control group

Lumbar MRI and lumbar CT images of 
patients, aged 18 to 44, obtained between 
January 2018 and March 2021 in Near East 
University Hospital’s Radiology Department 
were evaluated retrospectively. Postmen-
opausal female patients and male patients 
over 50 years of age, patients with severe 
scoliosis or deformity, spondyloarthrosis, in-
flammatory diseases (tuberculosis, brucella, 
ankylosing spondylosis, etc.), tumoral lesions 
(leukemia, lymphoma, multiple myeloma, 
vertebral metastasis, etc.), or a history of lum-
bar stabilization surgery, glucocorticoid ster-
oid use, or any disease that may cause sec-
ondary osteoporosis were excluded from the 
study. Furthermore, 526 sagittal T1-weighted 
MRI of 58 patients (26 males, 32 females, 
aged 20 to 44 years (mean: 32, SD: +/−8.3) 
and 534 sagittal reformatted CT images of 50 
patients (30 males, 20 females, aged 18 to 44 
years (mean: 28, SD: +/−7.6) were used in the 
study.

The BMDs of the patients were evaluat-
ed by DEXA (Lunar DPX, GE, Madison, USA), 
and MRI examinations were performed using 
a 1.5-T system (Magnetom Aera, Siemens 
Healthcare, Erlangen, Germany). The stand-
ard lumbar MRI protocol at Near East Univer-
sity Hospital’s Radiology Department includ-
ed sagittal T1- and T2-weighted sequences, 
sagittal short-tau inversion recovery se-
quences, and axial T2-weighted sequences. 
Sagittal T1-weighted images (repetation 
time: 400 ms, echo time: 7.7 ms, slice thick-
ness: 3.5 mm, slice gap: 0.7 mm, matrix: 256 
× 320, field of view: 30 cm) were used in this 
study. The CT examinations were performed 
using a 256-detector multislice CT scanner 
(Somatom Definition Flash, Siemens Health-
care, Erlangen, Germany). Figures 1 and 2 
present the data selection procedure of this 
study for MRI and CT examinations, respec-
tively.

Written informed consent was obtained 
from all individual participants included in 
the study.

This study was performed in line with 
the principles of the Declaration of Helsinki. 
Approval was granted by the Ethics Com-
mittee of Near East University (30.09.2021/
YDU/2021/95-1394).

Test set

It is not difficult to distinguish a young 
person’s spine from that of an elderly person. 
To demonstrate that the dataset was not bi-
ased, a hold-out test set was extracted from 

Figure 1. Data selection procedure of the study for magnetic resonance imaging examinations. MRI, 
magnetic resonance imaging; DEXA, dual-energy X-ray absorptiometry; CNN, convolutional neural network; 
BMD, bone mineral density.

Figure 2. Data selection procedure of the study for computed tomography examinations. CT, computed 
tomography; DEXA, dual-energy X-ray absorptiometry; CNN, convolutional neural network; BMD, bone 
mineral density.
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the dataset of the CT and MRI scans of the 
control and patient groups. Close age rang-
es were selected for both groups to observe 
the diagnostic abilities of all models and to 
check possible bias using the minimized age 
differences between the control and patient 
groups. 

The control group of the set included 24 
MRI (age: 39–44 years) and 34 CT scans (age: 
40–44 years). The patient group of the set in-
cluded 24 MRI (age: 44–46 years) and 34 CT 
scans (age: 46–48 years). Therefore, a total of 
116 images were obtained (48 MRI/68 CT, 58 
controls/58 patients). 

The hold-out test set was not included in 
any part of the models’ training, and addi-
tional experiments were performed. All mod-
els were trained using the rest of the images 
in the dataset, and the hold-out test set was 
used only for testing. 

The distributional differences between 
the training and testing sets were analyzed 
in the patient and control groups. The skew-
ness of distribution between the training and 
test groups is presented in Table 1. The skew-
ness-of-distribution results showed that the 
training and test sets of the CT images were 
moderately skewed, while the MRI training 
and testing data had a fairly symmetrical dis-
tribution. These results suggest a minimal in-
fluence on the generalizability of our models.

Proposed model

A CNN is a deep-learning method that 
includes feature extraction and classification 
phases. Typical convolution layers consist of 
convolution operations using a number of 
predefined-sized kernels, an activation lay-
er, and a pooling layer. In the classification 
phase, the extracted features are flattened 
and fed to the fully-connected layers for clas-
sification.

A 3 × 3 filter size effectively extracts 
low-level features of images with minimal 
noise; however, the connectivity of the fea-
tures that provide significant distinguishable 
patterns according to the image character-
istics might be lost by minimizing the filter 
size. On the other hand, bigger filters, such as 
5 × 5, extract more details on superimposed 
regions using convolutions by considering 
more spatial pixels of the input images. 

The pooling process aims to reduce the 
number of features by choosing the most 
informative one among the extracted fea-
tures to decrease the computational cost of a 
model; however, relevant features might be 
eliminated. 

In this study, a CNN-based architecture 
using parallelized dual blocks was designed 
to extract and combine different levels of 
features in accordance with the properties of 
the considered dataset. The first block includ-
ed two convolutional layers with 3 × 3 filters 
followed by a 2 × 2 max-pooling operation. 
Similarly, the second block included two 
convolutional layers; however, the filter sizes 
were set to 5 × 5 to consider more spatial pix-
els in a wider region to detect the connected 
features. This enabled the extraction of both 
low- and high-level features and edges of the 
lumbar vertebrae. In addition, the max-pool-
ing operation was not applied to the con-
volution layers in the second block, and the 
feature map size was reduced by shifting 
the filters by two spatial pixels (stride: 2). 
Therefore, the features obtained by the com-
monly used convolutional layers with 3 × 3 
filters and a max-pooling operation were 
added to the features obtained by block 2. 
This provided new combined features using 
the variational properties of different blocks. 
Commonly, 32 filters and the rectified lin-
ear unit activation function are considered 
within block 1 and block 2. Since block 1 of 
the proposed model focuses on high-level 
features, such as general shape and intensi-
ty values, block 2 was used to extract more 
significant intensity values and provide more 
informative low-level features. Each convolu-
tional layer of blocks was followed by batch 
normalization to avoid over-fitting.

A final convolutional layer was added to 
the proposed model to apply 5 × 5 filters to 
the added features and extract their most 
informative characteristics. Furthermore, the 
number of filters was increased, and the pool-
ing operation was not considered to feed a 
fully connected layer with a maximum num-
ber of features to provide better convergence. 
The proposed model consisted of two fully 
connected layers with 32 and 16 neurons. 

There are several approaches to creating 
multimodal models. One approach uses dif-
ferent planes of a single imaging technique 
(i.e., the axial, sagittal, and coronal planes 
of CT scans) as different modalities to cre-
ate multimodal models. Another approach 

uses images acquired by different imaging 
devices in different modalities, such as us-
ing CT and MRI scans as separate modalities 
to implement a multimodal model. It is also 
possible to create multimodal models using 
images and text data as different modali-
ties.7,20 The use of modalities can include in-
formation from the same data or independ-
ent data for a common task. In addition, the 
multimodality of the models might include 
a single model for different modalities or in-
dependent models for the fed data.21,22 As a 
result, the fusion of different modalities can 
be performed at the feature, classification, 
or decision level.23 The fusion at the feature 
level includes the process of the different 
modality images, such as CT and MRI; it 
also unifies the extracted features and uses 
multimodal data representation to train a 
classifier. Conversely, the fusion of data at 
the classifier level uses the representation of 
independent features of different modalities 
in a concatenated feature set to train a mul-
timodal model. Finally, fusing at the decision 
level trains an independent classifier for dif-
ferent modalities, and the outputs of each 
classifier are fused for the final decision.23

The proposed model was implemented as 
unimodal and multimodal approaches with 
common properties. In this study, the multi-
modality of the model was created by using 
two imaging techniques, MRI and CT, as sep-
arate modalities with two identical unimodal 
architectures. The loss functions (categorical 
cross entropy) of general unimodal architec-
tures (L1 and L2) were used to determine 
the final loss (L3) of the multimodal model. 
Therefore, the multimodal model provided 
the common convergence of the CT and 
MRI scans and allowed us to test the model 
using either both modalities or a single mo-
dality simultaneously. The formula of binary 
cross-entropy is given in equation (1):

 (1)

where x represents the CT or MRI modal-
ity, and y and p denote the target and pre-
dicted classes. The final loss of the model is 
calculated as given in equation (2):
Lf = LC + LM ,        (2)

Table 1. Skewness of distribution between the training and test groups

Group Skewness of distribution

CT control group 0.519

CT patient group −0.745

MRI control group −0.037

MRI patient group −0.129

CT, computed tomography; MRI, magnetic resonance imaging.



 

Prediction of osteoporosis using MRI and CT scans with unimodal and multimodal deep-learning models • 13

where Lf, Lc, and Lm denote the final, CT, 
and MRI modality losses. The general archi-
tecture of the proposed model with both 
unimodal and multimodal phases is shown 
in Figure 3. 

Experimental design 

This section presents the experimental 
design, validation strategy, and the consid-
ered evaluation metrics in detail. The exper-
iments were performed in four stages to ob-
serve the accuracy of osteoporosis diagnosis 
using different imaging modalities. 

The first two experimental stages involved 
training the proposed unimodal model using 
MRI and CT images, respectively. Consider-
ing separated MRI and CT modalities provid-
ed to analyze the effect of different medical 
imaging systems on osteoporosis diagnosis. 
The third stage was performed using the 
combined dataset created by shuffling both 
the CT and MRI datasets using the unimodal 
model. Finally, the fourth stage was imple-
mented using the proposed model as a mul-
timodal approach; CT and MRI scans were 
fed separately to the model and trained to-
gether. 

A patient-based experiment was also per-
formed to test the predictive ability of the 
models. A total of 27 patients (6 CT control 
+ 6 CT osteoporosis + 8 MRI osteoporosis + 
7 MRI control patients) and 228 correspond-
ing images (57 for each of the control and 
osteoporosis groups) were extracted to rep-
resent different age samples from the data-
set. The patient numbers varied because of 
the number of extracted slices of each pa-
tient. The unimodal and multimodal models 
were trained using the rest of the dataset 
independently to analyze the efficacy of the 
models for patient-based data. 

The proposed model was compared in 
three stages to the traditional CNN model 
and six benchmark and recent pre-trained 
networks (EfficientNet B0,24 InceptionV3,25 
ResNet50,26 InceptionResNetV2,27 Efficient-
NetV2S,28 and ConvNeXt Tiny29) to demon-
strate the efficiency of the proposed model.

The architecture of the traditional CNN 
model was determined after performing 
several experiments. The experiments were 
performed by adding and removing convo-
lutional layers and pooling operations and 
by increasing and decreasing filter sizes and 

strides systematically and iteratively using 
MRI data. The architecture that produced the 
best results was considered in the compari-
sons. The final architecture of the traditional 
CNN included two convolutional layers (64 
and 32 filters, respectively) and two fully con-
nected layers (128 and 64 neurons, respec-
tively). The abovementioned pre-trained 
networks were trained by adding a fully 
connected layer with 128 neurons for each 
and by using ImageNet weights. Therefore, 
the transfer-learning approach was used to 
transfer the acquired knowledge of the mod-
els to the diagnosis of osteoporosis. 

All experiments were performed using 
5-fold cross-validation to obtain consistent 
results. Cross-validation allowed the models 
to consider all images both in the training 
and testing phases. The models were trained 
five times, where the 4 of the folds were 
used for training, and the rest fold was used 
for testing. Therefore, the data dependency 
of the models was minimized in the evalua-
tion. The data selection in the folds was per-
formed randomly, and the final evaluation of 
the results was performed using the mean or 
sum of the correctly predicted samples ob-

Figure 3. The multimodal architecture of the proposed convolutional neural network model for osteoporosis prediction.
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tained in each fold. Data augmentation was 
not applied in the experiments.

Even though the datasets were balanced 
in this study, in which AI algorithms con-
verged effectively,30 we considered five differ-
ent evaluation metrics–specificity, sensitivity, 
accuracy, ROC AUC score, and balanced accu-
racy for robust model evaluation.31 Addition-
ally, 95% confidence intervals (CIs) were also 
provided for accuracy, sensitivity, and spec-
ificity. Accuracy was the primary evaluation 
metric of the classification tasks and provid-
ed a reliable measurement for balanced da-
tasets. Sensitivity and specificity were used 
to measure the models’ abilities to predict a 
dataset’s positive and negative samples. Ad-
ditionally, balanced accuracy was considered 
to measure the minor variations caused by 
the minimal number of output differences in 
the datasets; it measures the general classifi-
cation ability of the model by calculating the 
average of sensitivity and specificity metrics 
and eliminates the effect of different-sized 
datasets. The formula for balanced accuracy 
is shown in equation (3):

Balanced Accuracy = Sensitivity + Specificity
2

, (3)

where

Sensitivity = TP
TP + FN

,(4)

and

Specificity = TN
TN + FP  

(5)

The terms TN, TP, FP, and FN denote the 
true negative, true positive, false positive, 
and false negative samples predicted by the 
models. The ROC AUC score determines how 
the model distinguishes the positive and 
negative classes efficiently. The higher the 
score, the better the performance.

The abovementioned test set was used 
to test all models after training using all the 
data from the dataset. This allowed us to ob-
serve the diagnostic ability of all models and 
to check possible bias using the minimized 
age differences between the control and pa-
tient groups. Table 2 shows the details of the 
experimental stages. 

Statistical analysis

The adaptive moment estimation optim-
izer was used in all models, and the proposed 
models were trained for 20 epochs using 16 
batch sizes. The models were implemented 
on a Windows 11 PC with an Intel® Core™ i7-
9750H CPU, 16 GB memory, 1,660 GTX GPU, 
and Python 3.8.16 using TensorFlow Keras 
2.11.0.

Results 

Results of stage-1 experiments

In the stage-1 experiments, all models 
were trained using MRI. The InceptionV3 and 
EfficientNetV2S models obtained the lowest 
results for all evaluation metrics considered 
in this study. The InceptionResNetV2 model 
produced more stable results than Incep-
tionV3. ResNet50 achieved the highest spec-
ificity rate of the study, with 97.45% (95% CI 
for specificity: 96.1%–98.8%). However, it was 
observed that difficulties occurred in learn-
ing both classes, and the sensitivity rate of 
the model was measured as 88.84% (95% CI 
for sensitivity: 86.1%–91.6%). This caused a 
decrease in the general ability of the model. 
The ResNet50 model achieved 93.18% accu-
racy (95% CI: 91.6%–94.7%), a ROC AUC score 
of 0.932, and 93.15% balanced accuracy. The 
CNN model achieved more reliable and con-
sistent results than the abovementioned mod-
els, with 94.62% sensitivity, 95.10% specificity, 
0.948 ROC AUC score, and 94.86% balanced 
accuracy. The overall prediction ability of the 
CNN was measured as 94.86% (95% CI: 93.5%–
96.2%) accuracy. Even though the EfficientNet 
B0 model obtained the highest results com-
pared with the other pre-trained models with-
in the transfer-learning experiments, it did not 
outperform the unimodal implementation 
of the proposed model. It achieved 94.22%, 
96.86%, 95.55% (95% CI: 94.3%–96.8%), 0.955, 
and 95.54% for sensitivity, specificity, accu-
racy, ROC AUC score, and balanced accura-
cy, respectively, while the proposed model 
achieved the highest sensitivity (96.01%), ROC 
AUC score (0.965), and balanced accuracy 
(96.54%) results of this study. The overall pre-
diction ability of the proposed method was 
96.54% (95% CI: 95.4%–97.7%). The ConvNeXt 
Tiny model achieved the same and highest 
sensitivity rate as the proposed method; how-
ever, it did not show the same performance for 
the other metrics. Table 3 presents the results 
of stage-1 in detail.

Results of stage-2 experiments

In this stage, CT images were used for 
training. All models increased the ability of 
osteoporosis prediction using CT images 
compared with the stage-1 experiments. 
However, the ResNet50 model obtained 
the lowest specificity (93.60% with 95% CI: 
91.6%–94.7%), ROC AUC score (0.942), and 
balanced accuracy rates (94.24%). Even 
though the InceptionV3 model obtained 
higher specificity and balanced accura-
cy than ResNet50, it obtained a minimum 
sensitivity of 94.69% (95% CI for sensitiv-
ity: 92.8%–96.6%). The proposed model 
achieved superior results and outperformed 
all the models considered in this study 
(98.48%, 99.20%, 0.988, and 98.84% for sen-
sitivity, specificity, ROC AUC score, and bal-
anced accuracy, respectively). The overall ac-
curacy of the proposed method was 98.84% 
(95% CI for sensitivity: 92.8%–96.6%).In con-
trast to its performance using MRI, the Effi-
cientNetV2S model achieved 99.20% spec-
ificity (95% CI for specificity: 98.4%–100%); 
however, it did not obtain sufficient results to 
outperform the proposed model and the In-
ceptionV3 model in other metrics. Similarly, 
the ConvNeXt Tiny model obtained the same 
specificity as both the proposed method and 
EfficientNetV2S. The EfficientNetV2S and In-
ceptionResNetV2 models followed the pro-
posed model for all metrics. Table 4 presents 
the results of stage-2 in detail.

Results of stage-3 experiments

In this stage, CT and MRI were combined 
as input patterns in training without distin-
guishing the differences. The ResNet50, In-
ceptionV3, and InceptionResNetV2 models 
did not produce reasonable results com-
pared with the other models. The CNN model 
and EfficientNet B0 obtained similar and rel-
atively higher balanced accuracies of 95.74% 
and 95.73% (95% CI: 94.9%–96.6%), respec-
tively. However, the conventional CNN mod-

Table 2. Details of the experiments and stages

Stage no Exp. name Image set Validation # of images # of trained 
models Type

1 Exp. 1 (MRI) MRI 5-fold CV 1,013 6 Unimodal

2 Exp. 2 (CT) CT 5-fold CV 1,028 6 Unimodal

3 Exp. 3 (Com) Combined 5-fold CV 2,041 6 Unimodal

4 Exp. 4 (MM) MRI + CT 5-fold CV 2,004 1 Multimodal

5 Exp. 5 Hold-out 
test set - 116 9 Both

6 Patient-
based MRI + CT Hold-out 2,004 Both

Exp., experiment; MRI, magnetic resonance imaging; CT, computed tomography; Com, combined; MM, multimodal; 
CV: cross-validation.
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el produced a higher specificity rate, while 
the EfficientNet B0 model obtained a more 
accurate sensitivity rate. Similar to the pre-
vious experiments, the proposed model out-
performed all models and achieved 96.69%, 
96.83%, and 0.968 for sensitivity, specificity, 
and ROC AUC score. It realized a balanced ac-
curacy of 96.76% (95% CI: 96.0%–97.5%). The 
EfficientNetV2S and ConvNeXt Tiny models 
obtained 96.25% and 95.98% accuracy, with 
95% CIs of 95.4%–97.1% and 95.0%–96.7%, 
respectively, and it followed the proposed 
model. Table 5 presents the results of stage-3 
in detail.

Results of stage-4 multimodal experiments

The proposed model was implemented 
as a multimodal approach in the multimodal 
experiments, and CT and MRI were fed to the 
model in different modalities. The models’ 
training was performed using a total of 2,004 
CT and MRI in separate unimodal blocks and 
fused at the feature level after the feature 
extraction process of independent unimod-
al blocks. Fusing the different modalities of 
osteoporosis images allowed us to test the 
proposed system on 1,002 images in a 5-fold 
cross-validation. Even though the model’s 

training consisted of fewer samples than 
used in the combined datasets of stage-3, 
the multimodal approach achieved higher 
results in all metrics: 98.61%, 99.20%, 0.989, 
and 98.90% (95% CI: 98.4%–99.4%) for sen-
sitivity, specificity, ROC AUC score, and bal-
anced accuracy, respectively. 

This experiment enabled us to observe 
the efficacy of feeding models with differ-
ent image modalities instead of combining 
them into a single dataset. The obtained re-
sults showed that the multimodal image ap-
proach produced higher rates and was more 
effective in predicting osteoporosis. Table 6 
presents the results obtained by the multi-
modal approach. 

Figures 4 and 5 present the Grad-CAM++32 
and saliency maps (using SmoothGrad33) of 
the multimodal model for correctly predict-
ed osteoporosis patients using MRI and CT 
scans, respectively. The figures show that the 
model focused on the lumbar vertebrae as 
expected to predict osteoporosis.

Results of stage-5 test-set experiments

All models, including the proposed mul-
timodal and unimodal models (CT, MRI, and 
combined) and comparison models, were 
trained using the rest of the dataset and test-
ed using the test set. In the CT experiments, 
the CT images of the test set were considered 
in the generalization phase, while in the MRI 
experiments, only the MRI were fed to the 
models. However, both modalities of the 
test sets were considered in the proposed 
combined unimodal and multimodal exper-
iments. Table 7 presents the results obtained 
by all the models using the test set.

Additionally, the analysis of the predic-
tion scores and DeLong statistical tests34 
were performed to evaluate the models’ 
decision-making strengths and prediction 
capabilities and to compare the models’ AUC 
scores statistically. As the same training and 
testing data were included for all models, a 
hold-out test was used for these analyses. 
The scores of correctly classified samples 
were considered, and the mean scores and 
SD were calculated for the unimodal and 
multimodal models. Even though all the 
models achieved reasonable scores, the re-
sults suggest that using a multimodal model 
increased the prediction scores and provid-
ed a more effective prediction of osteoporo-
sis. Table 8 presents the mean and SD results 
obtained for each model using the hold-out 
test set. 

Table 3. Results of stage-1 magnetic resonance imaging experiments

Model Accuracy*
(%)

Sensitivity*
(%)

Specificity*
(%)

Balanced 
accuracy 
(%)

ROC AUC 
score

Proposed model 96.54
(95.4–97.7)

96.01
(94.3–97.7)

97.06
(95.6–98.5) 96.54 0.965

CNN model 94.86
(93.5–96.2)

94.62
(81.5–87.8)

95.10
(93.2–97.0) 94.86 0.948

EfficientNet B0 95.55
(94.3–96.8)

94.22
(92.2–96.3)

96.86
(95.4–98.4) 95.54 0.955

ResNet50 93.18
(91.6–94.7)

88.84
(86.1–91.6)

97.45
(96.1–98.8) 93.15 0.932

InceptionV3 84.20
(82.0–86.5)

76.29
(72.6–80.0)

91.97
(89.6–94.3) 84.13 0.842

InceptionResNetV2 92.69
(91.1–94.3)

90.43
(87.9–93.0)

94.91
(93.0–96.8) 92.67 0.928

EfficientNetV2S 84.22
(82.1–86.6)

73.22
(69.5–76.93)

95.16
(93.3–97.1) 84.19 0.842

ConvNeXt Tiny 95.31
(94.1–96.6)

96.01
(94.3–97.7)

94.62
(92.7–96.5) 95.31 95.32

*Values   in parentheses indicate a 95% confidence interval; CNN, convolutional neural network; ROC, receiver 
operating characteristics; AUC, area under the curve.

Table 4. Results of stage-2 computed tomography experiments

Model Accuracy*
(%)

Sensitivity*
(%)

Specificity*
(%)

Balanced 
accuracy 
(%)

ROC AUC 
score

Proposed model 98.83
(98.2–99.5)

98.48
(97.4–99.5)

99.20
(98.4–100) 98.84 0.988

CNN model 98.15
(97.3–99.0)

97.53
(96.2–98.9)

98.80
(97.8–99.8) 98.16 0.981

EfficientNet B0 97.85
(97.0–98.7)

97.15
(95.7–98.6)

98.61
(97.6–99.6) 97.87 0.978

ResNet50 94.26
(92.8–95.7)

94.88
(93.0–96.8)

93.65
(91.5–95.7) 94.24 0.942

InceptionV3 94.55
(93.2–95.9)

94.69
(92.8–96.6)

94.44
(92.4–96.4) 94.54 0.945

InceptionResNetV2 98.63
(97.9–99.3)

98.29
(97.2–99.4)

99.00
(98.1–99.9) 98.64 0.986

EfficientNetV2S 98.50
(97.8–99.4)

97.80
(96.4–99.2)

99.20
(98.4–100)

98.50 0.985

ConvNeXt Tiny 96.68
(95.6–97.6)

94.18
(92.4–96.2)

99.20
(98.4–100) 96.69 0.967

*Values   in parentheses indicate a 95% confidence interval; CNN, convolutional neural network; ROC, receiver 
operating characteristics; AUC, area under the curve.
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The P values obtained by performing the 
DeLong statistical test showed no significant 
differences; however, the multimodal model 
was slightly superior to the unimodal mod-
els. Table 9 presents the DeLong statistical 
test results.

Results of patient-based experiments

The proposed models were tested using 
representative patients. The unimodal mod-
el for CT scans achieved 100% specificity by 
predicting the control group correctly and 

97.73% (95% CI: 88.9%–100%) sensitivity. The 
predictions of five patients were obtained 
accurately (100%); however, 70% (95% CI: 
41.6%–98.4%) accuracy was obtained for a 
single patient. 

The results of the unimodal model for pa-
tient-based MRI scans achieved slightly low-
er accuracy than CT scans, with 85.96% (95% 
CI: 76.9%–95.00%) sensitivity and 91.22% 
(95% CI: 83.9%–98.6%) specificity. Three of 
seven patients were accurately (100%) pre-
dicted for osteoporosis, and the remaining 
patients were predicted at between 66.67% 
(95% CI: 28.9%–100%) and 85.71% (95% CI: 
59.8%–100%) accuracy. 

The multimodal model obtained higher 
scores for MRI data and the same for CT data. 
The results for MRI data were 89.47% sen-
sitivity (95% CI: 81.5%–97.4%) and 96.49% 
(95% CI: 91.7%–100%) specificity. The re-
sults obtained by the multimodal model for 
MRI and CT images were 92.98% (95% CI: 
88.3%–97.7%) sensitivity and 98.24% (95% 
CI: 95.8%–100%) specificity. The accuracy 
was 95.61% (95% CI: 93.0%–98.3%). Table 10 
shows the obtained patient-based results in 
detail.

Sample images, demo codes, and 
notebook implementations are available 
at: https://github.com/BoranSekeroglu/
OSTEO_MODELS

Discussion
The obtained results are discussed in dif-

ferent sections to analyze the effect of dif-
ferent imaging modalities and multimodal 
approaches in predicting osteoporosis.

All the deep-learning models predicted 
osteoporosis at different rates. However, the 
proposed 5 × 5 convolutions in block 2 were 
used to predict more connected features at 
the vertebral bone boundaries. Adding the 
obtained features from both blocks and the 
consideration as new features enabled the 
proposed unimodal model to produce su-
perior results compared with the other con-
sidered models. In addition, the multimodal 
approach of the proposed model resulted in 
superior prediction rates.

Although the pre-trained CNN models 
obtained fluctuating results in different 
experiments, it was observed that the Con-
vNeXt, EfficientNetV2S, EfficientNet B0, and 
InceptionResNetV2 models produced con-
sistent and stable results, even though they 
did not outperform the proposed model. The 
fluctuations were considered to determine 
the consistency and stability of the models. 

Table 6. Results of the proposed model in the multimodal experiment

Model Accuracy*
(%)

Sensitivity*
(%)

Specificity*
(%)

Balanced 
accuracy (%)

ROC AUC 
score

Proposed model 98.90
(98.4–99.4)

98.61
(97.9–99.3)

99.20
(98.6–99.8) 98.90 0.989

*Values   in parentheses indicate a 95% confidence interval; ROC, receiver operating characteristics; AUC, area under 
the curve.

Table 5. Results of stage-3 combined experiments

Model Accuracy*
(%)

Sensitivity*
(%)

Specificity*
(%)

Balanced 
accuracy 
(%)

ROC AUC 
score

Proposed model 96.76
(96.0–97.5)

96.69
(95.6–97.8)

96.83
(95.8–97.9)

96.76 0.968

CNN model 95.73
(94.9–96.6)

95.33
(94.0–96.6)

96.14
(95.0–97.3)

95.74 0.957

EfficientNet B0 95.73
(94.9–96.6)

95.82
(94.6–97.0)

95.65
(94.4–96.9)

95.73 0.957

ResNet50 89.75
(88.4–91.1)

95.52
(94.3–96.8)

83.89
(81.6–86.2)

89.71 0.897

InceptionV3 89.75
(88.4–91.1)

88.04
(86.1–90.0)

91.50
(89.8–93.2)

89.77 0.899

InceptionResNetV2 92.65
(91.5–93.8)

88.62
(86.7–90.6)

96.73
(95.6–97.8)

92.68 0.926

EfficientNetV2S 96.25
(95.4–97.1)

96.20
(95.2–97.5)

96.28
(95.2–97.3)

96.24 0.962

ConvNeXt Tiny 95.98
(95.0–96.7)

95.94
(94.7–97.2)

96.03
(95.0–97.1) 95.99 0.960

*Values   in parentheses indicate a 95% confidence interval; CNN, convolutional neural network; ROC, receiver 
operating characteristics; AUC, area under the curve.

Figure 4. Grad-Cam++ and saliency visualization of the multimodal model for the magnetic resonance 
image (MRI) of correctly predicted osteoporosis: (a) original MRI, (b) Grad-CAM++, and (c) saliency map 
using SmoothGrad.

a b c
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The 5% change in specificity and sensitivity 
results assumed that the models were fo-
cused on a particular training data class dur-
ing convergence, and their generalization 
ability was inconsistent on the test folds. The 
traditional CNN demonstrated that the cor-
rect determination of the architecture might 
cause higher classification rates than with 
the pre-trained models. However, determin-
ing the correct architecture is challenging 
and time-consuming, and it increases the 
computation cost of the studies. 

The proposed model provided learning 
with few trainable parameters compared 
with other models and minimized the com-
putational cost in terms of training time. 
Contrary to the high computational cost of 
the pre-trained models (i.e., 37 sec/epoch 
for EfficientNet B0 and 76 sec/epoch for 
ResNet50), the computation cost of the pro-
posed unimodal, multimodal, and CNN mod-
els was an average of 1.2, 2.1, and 5.8 sec/
epoch with the GPU, respectively.

Recent studies showed that obtaining 
above 74% for sensitivity, specificity, and ac-
curacy in osteoporosis prediction is possible 
using AI and deep-learning models with dif-
ferent imaging modalities, such as CT, DEXA, 
and micro-CT.8,15-18,35-37

The results obtained using MRI of our 
study (stage-1) showed that MRI could be 
used effectively to predict osteoporosis with 
96.54% accuracy (95% CI: 95.4%–97.7%) and 
eliminate the side effects of radiation-emit-
ting devices.

On the other hand, the use of CT images 
resulted in more accurate results (98.84%), 
as they captured detailed anatomical struc-
tures. Combining CT and MRI without distin-
guishing the feature extraction process pro-
vided a limited contribution to osteoporosis 
prediction (96.76%). Even though a slight im-
provement occurred in the results compared 
with the results of the MRI experiments, 
there was a 2% decrease in the results ob-
tained using CT images. However, the signif-
icant ability of deep-learning models in the 
feature extraction process provided superior 
results (98.90%) than those obtained in all 
experiments separately or combined using 
a multimodal approach. The consideration 
of both CT and MRI in individual unimodal 
blocks and the use of the loss of separate un-
imodal blocks to train the multimodal model 
provide further prediction contributions. 

One of the most important outcomes of 
the experiments is that the trained mod-
el predicted osteoporosis using MRI or CT 

Figure 5. Grad-Cam++ and saliency visualization of the multimodal model for the computed tomography 
image of correctly predicted osteoporosis: (a) original computed tomography image, (b) Grad-CAM++, and 
(c) saliency map using SmoothGrad.

a b c

Table 7. Results of stage-5 test-set experiments

Model Accuracy*
(%)

Sensitivity*
(%)

Specificity*
(%)

Balanced 
accuracy (%)

ROC AUC 
score

CNN MRI 83.33
(72.8–93.9)

79.16
(62.9–95.4)

87.50
(74.3–100) 83.33 0.833

CNN CT 85.29
(76.9–93.7)

82.35
(69.5–95.2)

88.23
(77.4–99.1) 85.29 0.854

CNN combined 87.06
(81.0–93.2)

86.20
(77.3–95.1)

87.93
(79.5–96.3) 87.06 0.871

Efficient B0 MRI 93.75
(86.9–100)

91.66
(80.6–100)

95.83
(87.8–100) 93.75 0.978

Efficient B0 CT 92.64
(86.4–98.9)

91.17
(81.6–100)

94.11
(86.2–100) 92.64 0.927

Efficient B0
combined

92.24
(87.4–97.1)

91.37
(84.2–98.6)

93.10
(86.6–99.6) 92.24 0.924

ResNet50 MRI 77.08
(65.2–89.0)

79.16
(62.9–95.4)

75.00
(57.7–92.3) 77.08 0.771

ResNet50 CT 82.35
(73.3–91.4)

79.41
(65.8–93.0)

85.29
(73.4–97.2) 82.35 0.824

ResNet50 combined 83.05
(77.9–91.1)

81.03
(70.9–91.1)

85.00
(79.5–96.3) 83.01 0.840

InceptionV3 MRI 79.16
(67.7–90.7)

75.00
(57.7–92.3)

83.33
(68.4–98.2) 79.16 0.792

InceptionV3 CT 85.29
(76.9–93.7)

85.29
(73.4–97.2)

85.29
(73.4–97.2) 85.29 0.823

InceptionV3 combined 83.05
(77.9–91.1)

82.75
(73.0–92.5)

83.33
(77.3–95.1) 83.04 0.831

InceptionResNetV2 MRI 85.41
(75.4–95.4)

83.33
(68.4–98.2)

87.50
(74.3–100) 85.41 0.854

InceptionResNetV2 CT 94.11
(88.5–99.7)

94.11
(86.2–100)

94.11
(86.2–100) 94.11 0.942

InceptionResNetV2 
combined 87.28

(83.1–94.5)
89.65
(81.8–97.5)

85.00
(79.5–96.3) 87.32 0.874

EfficientNetV2S MRI 93.75
(86.9–100)

88.26
(78.6–100)

96.91
(89.9–100) 93.75 0.978
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images in a multimodal model, as the MRI 
and CT images used in this study were not 
obtained from the same patients. This will 
protect patients from being exposed to radi-
ation from different imaging techniques. We 
believe that our study and its results demon-
strate the efficiency of using deep-learning 
models, particularly the proposed unimodal 
and multimodal CNN models, in predicting 
osteoporosis more accurately. 

Furthermore, using the hold-out test set 
with minimized age differences between 
the control and patient groups as well as 
patient-based experiments allowed us to 
observe the main prediction capabilities of 
the models and avoid any bias in the test 
data. As a result, all the proposed models 
outperformed the other models considered, 
and the unimodal models achieved 95.83% 
(95% CI: 90.2%–100%) and 97.05% (95% CI: 
93.0%–100%) balanced accuracy on the 
hold-out test set for MRI and CT, respectively. 
Even though a slight decrease was observed 
in the combined unimodal model (95.68%), 
it also achieved higher scores than the other 
models. However, the multimodal model ob-
tained superior results by obtaining 97.91% 
(95% CI: 95.1%–100%) balanced accuracy.

The patient-based analysis showed that 
the proposed models accurately predicted 
osteoporosis with superior specificity, par-
ticularly with CT images. However, the mul-
timodal model provided better prediction 
ability with MRI. This proved once again that 
the combined use of different imaging mo-
dalities and the independent extraction of 
features during training improved the pre-
diction capability of CNNs and might provide 
more accurate support for radiologists.

Even though the best prediction of osteo-
porosis was obtained using CT images in the 
unimodal experiments, considering MRI in un-
imodal and multimodal models could prevent 
patients from being exposed to radiation and 
assist radiologists in diagnosing osteoporosis.

This study has limitations. Patients with T 
scores higher than -1 and BMD levels with-
in normal limits were excluded. This patient 
group could not be used as a control group 
because of the small number of patients. 
To protect non-indicated patients from 
DEXA-induced X-ray exposure, the DEXA 
data of the control group were not obtained. 
We are aware that the ideal scenario would 
have been to obtain the DEXA data of the 
control group, but we felt it would have been 
unethical. The control group was selected 
among pre-menopausal female patients and 
male patients under 50 years of age, and 

Table 8. Mean and standard deviation results of the prediction scores of the hold-out test 
set

Model Mean ROC AUC score Standard deviation

Proposed unimodal MRI 0.921 0.084

Proposed unimodal CT 0.952 0.056

Proposed unimodal combined 0.926 0.071

Proposed multimodal 0.965 0.039

MRI, magnetic resonance imaging; CT, computed tomography; ROC, receiver operating characteristics; AUC, area 
under the curve.

Table 9. Model comparison using the DeLong test for two correlated receiver operating 
characteristics area under the curve scores of the stage-5 test-set experiments

Multimodal MRI vs. unimodal MRI Multimodal CT vs. unimodal CT

Z value 0.574 0.444

P value 0.566 0.657

Confidence intervals −0.021–0.038 −0.029–0.047 

MRI, magnetic resonance imaging; CT, computed tomography.

Table 10. Results of patient-based experiments

Metric* Unimodal CT Unimodal MRI Multimodal

Total accuracy
(image-based)

97.38%
(95% CI: 94.4%–100%)

88.59%
(95% CI: 82.8%–94.4%)

95.61%
(95% CI: 93.0%–98.3%)

Total sensitivity
(image-based)

97.73% 
(95% CI: 88.9%–100%)

85.96% 
(95% CI: 76.9%–95.00%)

92.98%
(95% CI: 88.3%–97.7%)

Total specificity
(image-based) 100% 91.22% 

(95% CI: 83.9%–98.6%)
98.24% 
(95% CI: 95.8%–100%)

Maximum accuracy
(patient group) 100% 100% 100%

Maximum accuracy
(control group) 100% 100% 100%

Minimum accuracy
(patient group)

70%
(95% CI: 41.6%–98.4%)

66.67% 
(95% CI: 28.9%–100%)

87.5%
(95% CI: 64.6%–100%)

Minimum accuracy
(control group) 100% 77.78%

(95% CI: 50.6%–100%)
88.88%
(95% CI: 68.4%–100%)

*Total accuracy, total sensitivity, and total specificity indicate the image-based results of patients and the control 
group. The maximum and minimum scores indicate the highest and lowest scores from independent patient and 
control group analyses. MRI, magnetic resonance imaging; CT, computed tomography; CI, confidence interval.

Table 7. Continued

EfficientNetV2S CT 92.60
(86.3–98.8)

92.67
(83.1–100)

95.92
(88.0–100) 92.58 0.925

EfficientNetV2S 
combined

93.40
(87.2–99.6)

93.20
(86.1–100)

93.60
(87.1–100) 93.40 0.934

ConvNeXt Tiny MRI 93.75
(86.9–100)

91.66
(80.6–100)

95.83
(87.8–100) 93.75 0.978

ConvNeXt Tiny CT 90.56
(83.3–98.4)

85.29
(73.4–97.2)

95.83
(87.8–100) 90.56 0.906

ConvNeXt Tiny combined 90.55
(85.7–95.4)

93.20
(86.1–100)

87.93
(79.5–96.3) 90.56 0.905

Proposed unimodal MRI 95.83
(90.2–100)

91.66
(80.6–100)

100.00
(100–100) 95.83 0.959

Proposed unimodal CT 97.05
(93.0–100)

97.05
(91.4–100)

97.05
(91.4–100) 97.05 0.971

Proposed unimodal 
combined

95.68
(92.0–99.4)

94.82
(89.1–100)

96.55
(91.9–100) 95.68 0.957

Proposed multimodal 97.91
(95.1–100)

97.91
(95.1–100)

97.91
(95.1–100) 97.91 0.979

*Values   in parentheses indicate a 95% confidence interval; MRI, magnetic resonance image, CT, computed 
tomography, ROC, receiver operating characteristics; AUC, area under the curve.
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patients with diseases and/or drug use that 
may cause secondary osteoporosis were ex-
cluded from the study. To demonstrate that 
the dataset was not biased, a hold-out test 
set was extracted from the dataset. How-
ever, the developed system was not tested 
with an external dataset, and the use of the 
proposed models in clinical practice requires 
further investigation.

Eliminating the abovementioned limita-
tions might lead to more robust findings in 
further studies.

In conclusion, we considered two prima-
ry datasets that included MRI and CT imag-
es and proposed specifically designed CNN 
models for osteoporosis prediction. Several 
experiments were performed, and the ob-
tained results were compared with those 
of the traditional CNN and six benchmark 
pre-trained models using the transfer-learn-
ing approach. The proposed unimodal 
CNN model outperformed the other con-
sidered models in predicting osteoporosis 
using MRI and CT images separately and 
obtained 96.54% and 98.84% balanced ac-
curacy, respectively. Superior results were 
obtained using the proposed multimodal 
CNN model, and 98.90% balanced accuracy 
was achieved. Furthermore, a hold-out test 
and patient-based experiments were used 
to test the models, and the proposed models 
achieved superior results.

The obtained results showed that the 
developed deep-learning models could pro-
duce accurate results in osteoporosis pre-
diction using different imaging techniques. 
However, considering MRI images, even in 
unimodal and multimodal models, could 
minimize DEXA and CT use and prevent pa-
tients from being exposed to radiation. Our 
future work will include risk assessment us-
ing MRI scans, and further studies might fo-
cus on increasing the accuracy obtained in 
this study using more patient data.
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