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PURPOSE
The study aims to investigate the predictability of the radiological response in intrahepatic cholan-
giocarcinoma (iCC) patients undergoing Yttrium-90 transarterial radioembolization (TARE) with a 
combined model built on dynamic magnetic resonance imaging (MRI)-based radiomics and clinical 
features. 

METHODS
Thirty-six naive iCC patients who underwent TARE were included in this study. The tumor segmen-
tation was performed on the axial T2-weighted (T2W) without fat suppression, axial T2W with fat 
suppression, and axial T1-weighted (T1W) contrast-enhanced (CE) sequence in equilibrium phase 
(Eq). At the sixth month MRI follow-up, all patients were divided into responders and non-respond-
ers according to the modified Response Evaluation Criteria in Solid Tumors. Subsequently, a ra-
diomics score (rad-score) and a combined model of the rad-score and clinical features for each 
sequence were generated and compared between the groups.

RESULTS
Thirteen (36.1%) patients were considered responders, and the remaining 23 (63.9%) were non-re-
sponders. Responders exhibited significantly lower rad-scores than non-responders (P < 0.050 for 
all sequences). The radiomics models showed good discriminatory ability with an area under the 
curve (AUC) of 0.696 [95% confidence interval (CI), 0.522–0.870] for the axial T1W-CE-Eq, AUC of 
0.839 (95% CI, 0.709–0.970) for the axial T2W with fat suppression, and AUC of 0.836 (95% CI, 0.678–
0.995) for the axial T2W without fat suppression.

CONCLUSION
Radiomics models created by pre-treatment MRIs can predict the radiological response to Yttri-
um-90 TARE in iCC patients with high accuracy. Combining radiomics with clinical features could in-
crease the power of the test. Large-scale studies of multi-parametric MRIs with internal and external 
validations are needed to determine the clinical value of radiomics in iCC patients.
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Intrahepatic cholangiocarcinoma (iCC) is the second most common primary hepatic malig-
nancy after hepatocellular carcinoma.1 Its worldwide incidence has increased over the past 
few decades.2 If left untreated, the prognosis is poor, with an estimated median survival 

of 3 to 8 months. Treatment options for iCC include surgical resection and transplantation. 
Unfortunately, most patients will present with metastatic or locally advanced disease at diag-
nosis and are not candidates for surgery.3 For unresectable iCCs, systemic chemotherapy with 
cisplatin-gemcitabine results in a relatively poor median overall survival (OS) of 11.7 months.4 
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Currently, transarterial radioembolization 
(TARE) is used as the first-line treatment due 
to radiation sensitivity and high arterial per-
fusion of the tumor.5 The results of TARE are 
mixed, with median response rates ranging 
from 5% to 36% and median OS from 9 to 22 
months.6 Additionally, TARE is a costly and 
laborious treatment method; therefore, pre-
dicting response to treatment is crucial for 
accurate patient selection.

Radiomics is the post-processing analysis 
of medical images with custom-made soft-
ware to obtain texture data imperceptible to 
the human eye. The data obtained are ana-
lyzed with machine learning algorithms and 
developed models.7 The number of studies 
in radiomics, particularly for predicting the 
treatment response of hepatic malignan-
cies, including hepatocellular carcinoma and 
hepatic metastasis, has increased exponen-
tially in recent years.8,9 However, although 
iCC is the second most common primary 
liver cancer, they are relatively rare tumors, 
and studies on radiomics in iCC patients are 
limited and derived from computed tomog-
raphy (CT) examinations.10,11 As far as we 
know, there are yet to be studies on whether 
radiomics analyses based on magnetic reso-
nance imaging (MRI) can predict the radio-
logical response to TARE in iCC patients.

This study aims to investigate the pre-
dictability of the treatment response in iCC 
patients undergoing Yttrium-90 TARE with a 
combined model created with dynamic MRI-
based radiomics and clinical features.

Methods

Study design

The Institutional Clinical Research Çuku-
rova University, Faculty of Medicine, Clinical 
Ethics Commitee (decision number: 114/09-

2021) approved this single-center retrospec-
tive study. Informed consent was obtained 
from all patients prior to all diagnostic and 
therapeutic procedures in accordance with 
the principles of the 1964 Declaration of Hel-
sinki.

Fifty-five naive iCC patients who under-
went TARE between September 2015 and 
January 2022 were included in the study. 
The inclusion criteria were a biopsy-proven 
diagnosis of iCC and dynamic MRI before and 
after TARE. The exclusion criteria were prior 
local or systemic treatments, an inability to 
clearly distinguish tumor boundaries due to 
the infiltrative pattern on the pre-treatment 
MRI, and images unsuitable for analysis due 
to motion artifacts. Nineteen patients who 
underwent TARE for iCC were excluded from 
the study after application of the exclusion 
criteria. As a result, a total of 36 patients who 
met the selected criteria were included in the 
study.

Pre-treatment clinical characteristics, in-
cluding age, gender, alpha-fetoprotein, carci-
noembryonic antigen, carbohydrate antigen 
19-9, alanine aminotransferase, aspartate 
aminotransferase, total bilirubin, and albu-
min, an international normalized ratio (INR), 
intrahepatic tumor distribution, positron 
emission tomography/CT-based extrahepat-
ic disease spread, and nodal involvement 
were noted. The laboratory examination re-
sults were obtained from blood tests the day 
before TARE and during planned follow-ups.

MRI examinations

The MRI examinations were acquired us-
ing a 1.5 Tesla system (Optima, General Elec-
tric Healthcare, USA) or a 3.0 Tesla system 
(Ingenia, Philips Medical Systems, the Neth-
erlands). The MRI sequences were composed 
of an axial T2-weighted (T2W) without fat 
suppression, axial T2W with fat suppression, 
and axial T1-weighted (T1W) contrast-en-
hanced (CE) sequence in equilibrium phases 
(Eq). The specific parameters of axial T2W 
imaging were as follows: time of repetition 
(TR) 10,000 ms, time of echo (TE) 66 ms, layer 
thickness 6 mm, layer spacing 1 mm, matrix 
320 × 320, field of view (FOV) 400 mm × 400 
mm, piecewise collection times or average 
times 1, and parallel collection factor 0, fs. 
The parameters of dynamic CE MRI were as 
follows: TR 4.2 ms, TE 1 min full, layer thick-
ness 5 mm, layer spacing 0 mm, matrix 260 
× 224 mm, FOV 380 mm × 342 mm, and par-
allel acceleration factor 2. T1W was acquired 
using 0.1 mmol/kg gadolinium-diethylen-
etriamine penta-acetic acid (Gd-DTPA) at a 

rate of 2.5 mL/s in the Eq (a scanning delay 
of 180 s). MRI sequences have been abbre-
viated as “phase 1: axial T1W CE Eq, phase 2: 
axial T2W with fat suppression, and phase 3: 
axial T2W sequence without fat suppression” 
in relevant places in the text.

Transarterial radioembolization

All patients underwent splanchnic angi-
ography via the femoral approach, and the 
tumor-feeding arteries were determined by 
cone-beam CT, followed by a 99m techne-
tium-macroaggregate albumin (MAA) injec-
tion. The lung shunt fraction and distribution 
of MAA within the tumors and non-tumor 
tissue were evaluated with single-photon 
emission CT. The desired dose was calculat-
ed using partition model dosimetry.12 During 
TARE, infusion of a previously calculated dose 
of the Yittrum-90-loaded resin (SIR-Spheres, 
Sirtex Medical, Australia) or glass micro-
spheres (TheraSphere, Boston Scientific, US) 
was carried out under fluoroscopic guidance 
with super-selective or selective manner de-
pending on the defined vascular anatomy. 
All patients were scheduled for follow-up, 
including MRI and laboratory tests. After the 
TARE procedure, the patients were observed 
for complications for 24 hours.

Evaluation of the radiological response to 
treatment

Following TARE, dynamic CE MRI was 
performed at intervals of three consecutive 
months. The response of the index tumor to 
the treatment was evaluated according to 
the modified Response Evaluation Criteria 
in Solid Tumors.13 The objective response of 
the index tumor represented the primary 
outcome measure and was defined as the 
sum of the complete response and partial re-
sponse. Based on the 6-month MRI follow-up, 
the patients were divided into two groups of 
responders and non-responders.

Tumor segmentation

Digital Imaging and Communications in 
Medicine data were transferred to a work-
station and analyzed by dedicated software 
(Olea Sphere v.3 SP2, Olea Medical, France). 
The raw images were normalized using a 
Z-score to rule out the possible effects of dif-
ferent MRI devices. Subsequently, axial T2W 
without fat suppression, axial T2W with fat 
suppression, and axial T1W-CE-Eq images 
were segmented by two radiologists blinded 
to the aim of this study manually drawing the 
boundaries of the tumors slice-by-slice. After 
this, a volume of interest (VOI) that covered 
the entire tumor was created (Figure 1). One 

Main points

• Intrahepatic cholangiocarcinoma (iCC) is 
the second most common primary hepatic 
malignancy.

• Transarterial radioembolization (TARE) is 
used as a first-line treatment in iCC patients 
due to the radiation-sensitivity of this tumor.

• TARE is a costly and laborious treatment 
method; therefore, predicting the response 
to the treatment is crucial for accurate pa-
tient selection.

• In radiomics models created by pre-treat-
ment magnetic resonance imaging, the re-
sponse to TARE in iCC patients can be pre-
dicted with high accuracy.
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hundred eight grey-level properties (first and 
second order) of the generated VOI were ex-
tracted.

Selection of the treatment response-relat-
ed features and construction of a radiomics 
score

One hundred eight features were extract-
ed based on the MRI for each patient. Be-
cause the number of features was superior 
to the number of patients, a radiomic feature 
selection process was constructed using the 
lowest absolute shrinkage and selection op-
erator (LASSO)14 The logistic radiomics mod-
els for predicting the treatment response for 
all phases were fitted to select the treatment 
response-related features with nonzero coef-
ficients. Three-fold cross-validation with min-
imum criteria was employed to find an opti-
mal tunning parameter, where the final value 
of the tuning parameter yielded minimum 
cross-validation error and maximum area 
under the curve (AUC). Then, the radiomics 
score (rad-score) was calculated for each pa-
tient by a linear combination of the selected 
features (with nonzero coefficients) and their 
respective coefficients.

Statistical analysis

All analyses were performed using IBM 
SPSS software (version 20; IBM Corp, USA) 
and R software (version 1.0.143). Categorical 
variables were expressed as numbers and 
percentages, whereas continuous variables 
were summarized as mean, standard de-
viation, median, and minimum-maximum 
where appropriate. The chi-squared test 
was used to compare categorical variables 
between patient groups. The normality of 

distribution for continuous variables was 
confirmed with the Shapiro–Wilk test. The 
Student’s t-test or Mann–Whitney U test 
was used to compare the continuous clini-
cal characteristics between patient groups 
depending on whether the statistical hy-
potheses were fulfilled. The glmnet package 
(https://cran.r-project.org/web/packages/
glmnet/index.html) was used for the LASSO 
binary logistic regression. The distribution 
of the rad-scores in the treatment response 
groups was demonstrated via a violin plot, 
which is a hybrid of a box plot and a kernel 
density plot. Violin plots were plotted using 
the ggplot2 package (https://cran.r-project.
org/web/packages/ggplot2/index.html). 
Logistic regression analysis was performed 
to determine significant predictors of the 
treatment response. Clinical features that 
were significant at the P < 0.250 level in the 
univariate analysis were entered into the 
stepwise logistic regression analysis using 
the backward logistic regression method. 
Features with a P < 0.050 after the stepwise 
analysis were included in the clinical model. 
In addition, three combined models were 
built: (1) a model adding the rad-score in the 
axial T2W without fat suppression to the clin-
ical model, (2) a model adding the rad-score 
in the axial T2W with fat suppression to the 
clinical model, and (3) a model adding the 
rad-score in the axial T1W CE Eq to the clini-
cal model. The goodness-of-fit of the models 
was assessed with Nagelkerke’s R-squared 
model.

The predictive ability of the models was 
assessed with receiver operator characteris-
tic curves and associated performance diag-
nostics (AUC, sensitivity, and specificity). The 
best cut-off value was based on the index 

of union method.15 The AUCs of the mod-
els were compared with the DeLong test 
(https://www.rdocumentation.org/packag-
es/Daim/versions/1.1.0/topics/DeLong.test). 
The net reclassification index (NRI) and in-
tegrated discrimination improvement (IDI) 
were used to assess the discrimination and 
reclassification ability to use the rad-score.16 
Each combined model was compared with 
the clinical model as a reference to assess 
them. The PredictABEL package was used to 
calculate the NRI and IDI (https://cran.r-pro-
ject.org/web/packages/PredictABEL/index.
html). The statistical level of significance for 
all tests was P < 0.050.

Results

Clinical characteristics

Thirteen (36.1%) patients were consid-
ered responders, and the remaining 23 
(63.9%) were non-responders at the 6-month 
follow-up. Table 1 presents the baseline 
clinical characteristics of the patients in the 
treatment groups. There were no significant 
differences in any of the characteristics be-
tween the two treatment response groups (P 
> 0.050 for all).

Radiomics signature calculation and eval-
uation

To investigate the effectiveness of the 
treatment response discrimination, we per-
formed LASSO modeling of the texture fea-
tures; 108 features were chosen to construct 
the rad-score for the axial T1W-CE-Eq. Simi-
larly, four features were selected for the axial 
T2W with fat suppression and eight features 
for the axial T2W without fat suppression. Us-
ing these features, rad-scores were generat-
ed for each patient in three phases, and Sup-
plementary Material 1 contains the details of 
the feature selection process.

Responders exhibited significantly lower 
rad-scores than non-responders in all phases 
(P = 0.039 for the axial T1W-CE-Eq, P = 0.001 
for the axial T2W with fat suppression, and P 
= 0.001 for the axial T2W without fat suppres-
sion). Figure 2 presents the violin plot of the 
rad-scores for all phases.

Model building and performances

Table 2 summarizes the results of the mul-
tivariate logistic regression analysis. After the 
stepwise regression analysis, results for the 
clinical model (before the rad-score was add-
ed to the clinical features) revealed that bilo-
bar disease [odds ratio (OR): 4.53, 95% con-
fidence interval (CI): 1.06–19.41, P = 0.042] 

Figure 1. A 58-year-old male patient had pathologically proven intrahepatic cholangiocarcinoma in the 
entire right lobe of the liver. Segmentation of this mass was performed on axial T1-weighted contrast-
enhanced equilibrium phase (a, b), axial T2-weighted sequence without fat suppression (c, d), and axial 
T2-weighted with fat suppression (e, f) magnetic resonance images.
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and the INR (OR: 2.31, 95% CI 0.93–5.74, P = 
0.072) were significant independent risk fac-
tors for the treatment response. Results of 
the combined models (obtained by integrat-
ing the significant clinical features and the 
rad-score in each phase) demonstrated that 
bilobar disease and the rad-score in the axial 
T2W with fat suppression (OR: 7.97, 95% CI: 

1.03–62.03, P = 0.047 and OR: 1.33, 95% CI: 
1.06–1.68, P = 0.015) and the rad-score in the 
axial T2W without fat suppression (OR: 1.31, 
95% CI: 1.04–1.65, P = 0.023) were independ-
ent predictors of the treatment response.

The radiomics models (fitted only from 
the rad-scores in each phase) showed good 
discriminatory ability with an AUC of 0.696 

(95% CI: 0.522–0.870) for the axial T1W-CE-
Eq, 0.839 (95% CI: 0.709–0.970) for the axial 
T2W with fat suppression, and 0.836 (95% 
CI, 0.678–0.995) for the axial T2W without 
fat suppression (Table 3). There was no sig-
nificant difference in AUCs between the radi-
omics models (DeLong’s tests P > 0.050 for all 
pairwise comparisons).

The clinical model resulted in an AUC of 
0.769, followed by the combined model-1 
(0.816), the combined model-2 (0.863), and 
the combined model-3 (0.880) (Figure 3). 
Although the AUC of the combined model-3 
was not significantly higher than the other 
models, the combined model-3 showed a 
favorable AUC of 0.880 (95% CI: 0.730–0.999) 
(Table 3). The sensitivity and specificity of the 
combined model-3 were 92% and 78%, re-
spectively. Relative to the clinical model, the 
use of the combined model-2 resulted in an 
NRI of 93.0% (P = 0.002) and an IDI of 20.0% 
(P = 0.003), and the use of combined model-3 
resulted in an NRI of 86.0% (P = 0.006) and 
an IDI of 22.0% (P < 0.001). The reclassifica-
tion measures of discrimination confirmed 
that adding rad-scores to the clinical model 
(the combined model-2 and the combined 
model-3) performed better than the clinical 
model alone. Table 3 presents the detailed 
information for the prediction performance 
of the models.

Discussion
In this study, the predictability of the 

treatment responses in iCC patients un-
dergoing TARE was investigated with a 
combined model created with MRI-based 
(including the axial T1W-CE-Eq, axial T2W 
without fat suppression, and axial T2 with 
fat suppression sequences) radiomics and 
clinical features. Radiomics models were pro-
duced to predict the radiological response 
with high accuracy. Bilobar disease and rad-
scores were independent predictors of the 
treatment response. There was no statistical 
difference between the models combining 
clinical characteristics with radiomics fea-
tures. This study is important because it is the 
first one in which the response of TARE in iCC 
patients has been predicted with MRI-based 
radiomics.

Patients with unresectable iCC have a 
poor prognosis. The previously published 
studies revealed that TARE has great poten-
tial to improve patients’ prognosis and OS. 
However, they have reported a wide range of 
median OS in iCC (6.1–22 months), probably 
reflecting the heterogeneous biological be-
havior of this relatively rare tumor.17-19 There-

Table 1. Clinical characteristics of the study population

Treatment response P

  Responders  
(n = 13)

Non-responders 
(n = 23)

Age, years 55.0 ± 15.6 59.6 ± 9.3 0.323

Gender, n (%)

> 0.999Male 8 (66.7) 4 (33.3)

Female 15 (62.5) 9 (37.5)

Bilobar disease, n (%)

0.082- 17 (77.3) 5 (22.7)

+ 6 (42.9) 8 (57.1)

Extrahepatic disease, n (%)

0.474- 16 (69.6) 7 (30.4)

+ 7 (53.8) 6 (46.2)

Lymphadenopathy, n (%)
0.474

- 16 (69.6) 7 (30.4)

+ 7 (53.8) 6 (46.2)
0.675

CEA 2.6 (0.5–69.1) 1.9 (0.6–106.4)

CEA, n (%)

0.720Normal 8 (33.3) 16 (66.7)

Abnormal 5 (41.7)  7 (58.3)

CA 19.9  141.4 (2.0–1786.8) 31.1 (0.0–1859.1) 0.093

CA 19.9, n (%)

Normal 3 (20.0) 12 (80.0) 0.177

Abnormal 10 (47.6) 11 (52.4)

CA19-9log10 2.1 ± 0.8 1.6 ± 0.9 0.147

AFP  4.9 (2.0–198718.0) 4.0 (1.0–437.7) 0.344

AFP, n (%)

0.474Normal 7 (30.4) 16 (69.6)

Abnormal 6 (46.2) 7 (53.8)

AFPlog10 0.7 (0.3–5.3) 0.6 (0.0–2.6) 0.344

Total bilirubin  0.6 (0.3–0.9) 0.5 (0.1–3.2) 0.267

Total bilirubin, n (%)

Normal 11 (42.3) 15 (57.7) 0.270

Abnormal 2 (20.0) 8 (80.0)

Albumin  38.9 (31.1–45.0) 40.8 (25.0–44.3) 0.190

INR  1.1 ± 0.1 1.0 ± 0.1 0.103

Rad-score (phase 1) -0.5415 ± 0.0466 -0.5879 ± 0.0691 0.039

Rad-score (phase 2) -0.2136 ± 0.3581 -0.8405 ± 0.5425 0.001

Rad-score (phase 3) -0.1994 ± 0.5798 -0.8491 ± 0.4408 0.001

Unless otherwise specified, data were expressed as mean ± standard deviation or median (min-max). CEA, 
carcinoembroyologic antigen; CA, carbohydrate antigen; AFP, alfa-fetoprotein; INR, international normalized ratio; 
rad score, radiomics score; phase 1, axial T1-weighted contrast-enhanced equilibrium phase; phase 2, axial T2-
weighted with fat suppression; phase 3, axial T2-weighted sequence without fat suppression.
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fore, the pre-treatment determination of the 
prognostic factors is important in the patient 
selection for TARE and the implementation 
of personalized treatments. In this study, the 
tumor responded to therapy in about a third 
of the treated patients. Texture analysis based 
on pre-treatment MRI was a valuable marker 
for predicting the treatment response in un-
resectable iCC patients who underwent TARE.

Previous studies have identified clinical 
prognostic factors in patients with iCC who 
underwent TARE. Tumors with bilobar dis-
ease had a lower OS rate after the administra-
tion of TARE than tumors with unilobar dis-
ease. On the other hand, it was established 
that extrahepatic disease and liver function 
did not affect the prognosis.20 In this study, 
it was found that extrahepatic metastases 

and liver function did not have prognostic 
significance. However, bilobar disease was 
associated with a treatment response in iCC 
patients.

Mosconi et al.11 analyzed the data of 53 
iCC patients who underwent TARE and inves-
tigated the relationship between CT textural 
features prior to TARE and the OR. They used 
the arterial phase images for texture analy-
sis to show that iCCs with a high uptake of 
iodine contrast in the arterial phase had a 
higher OR after TARE. Combining these tex-
tural features provided an AUC for an OR pre-
diction of 0.896 (95% CI 0.814–0.977). In the 
present study, MRI was used, as it has a better 
resolution than CT and shows more tumor 
tissue features. The AUC in the authors’ study 
(0.880) was similar to Mosconi et al.’s11 results.

Zhang et al.21 investigated predicting 
the immunophenotyping (IP) and OS of iCC 
patients using preoperative MRI texture 
analysis. They found that the MRI tissue sig-
nature could serve as a potential predictive 
biomarker for IP and OS using arterial phase 
images for tissue analysis.21 Mosconi et al.11 

considered that tumor enhancement at the 
arterial phase indicated hyperperfusion 
as the applicability of TARE. Zhang et al.21 
thought that the arterial phase revealed the 
amount of inflammation better than other 
MRI sequences. In the present study, tissue 
analysis was performed in the axial T2W 
with and without fat suppression and axial 
T1W CE-Eq because the amount of fibrous 
component associated with poor prognosis 
is better visualized on MRI as a peripheral 
hypointensity in T2W and CE images on the 
delay phase.21 In this study, the arterial phase 
was not used since the truncation artifact 
negatively affects tumor segmentation in 
MRI with Gd-DTPA. Therefore, this study re-
veals the importance of using other MRI se-
quences (axial T2W without fat suppression 

Figure 2. The violin plot of the rad-scores for non-responders and responders. The wider parts of the violin 
plot show that the patients of the group are more likely to receive the given value, while the thinner parts are 
less likely. The squares represent the mean values. The difference between radiomics scores was compared 
with the independent samples t-test (P = 0.039 for axial T1-weighted-contrast-enhanced equilibrium, 
P = 0.001 for axial T2-weighted with fat suppression, and P = 0.001 for the axial T2-weighted without fat 
suppression).

Table 3. Performance of the radiomics models 

  Cut-off SEN SPE AUC (95% CI) P NRI (95% CI) P IDI (95% CI) P

Radiomics models

Phase 1 -0.5585 0.54 0.56 0.696 (0.522–0.870) 0.054

Phase 2 -0.4024 0.77 0.83 0.839 (0.709–0.970) 0.001

Phase 3 -0.4254 0.77 0.83 0.836 (0.678–0.995) 0.001

Clinical model 0.4181 0.69 0.74 0.769 (0.607–0.931) 0.008

Combined model-1 0.4052 0.85 0.74 0.816 (0.667–0.965) 0.002 0.19 (-0.48–0.86) 0.582 0.04 (-0.02–0.09) 0.227

Combined model-2 0.3375 0.85 0.78 0.863 (0.744–0.982) <0.001 0.93 (0.34–1.52) 0.002 0.20 (0.06–0.33) 0.003

Combined model-3 0.3211 0.92 0.78 0.880 (0.730–0.999) <0.001 0.86 (0.25–1.48) 0.006 0.22 (0.09–0.35) <0.001

Note: (1) Nagelkerke R2: phase 1 0.172, phase 2 0.400, phase 3 0.409, clinic model 0.273, combined model-1 0.319, combined model-2 0.520, combined model-3 0.491. (2) NRI 
and IDI values refer to the clinical model compared to the corresponding combined model. SEN, sensitivity; SPE, specificity; AUC, area under the curve; CI, confidence interval; 
NRI, net reclassification index; IDI, integrated discrimination improvement; phase 1, axial T1-weighted contrast-enhanced equilibrium phase; phase 2, axial T2-weighted with fat 
suppression; phase 3, axial T2-weighted without fat suppression.

Table 2. Multivariate logistic regression analysis of the prediction of the treatment response

Variables Clinical model Combined model-1 Combined model-2 Combined model-3

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

Bilobar 
disease

4.53 
(1.06–19.41) 0.042 4.76 

(0.92–27.8) 0.064
7.97 
(1.03–
62.03)

0.047 5.15 
(0.80–33.20) 0.085

INR 2.31 
(0.93–5.74) 0.072 1.89 

(0.72–5.1) 0.195 1.61 
(0.53–4.88) 0.404 1.26 

(0.38–4.15) 0.701

Rad-score 
- phase 1

2.50 
(0.54–11.49) 0.239

Rad-score 
- phase 2

1.33 
(1.06–1.68) 0.015

Rad-score 
- phase 3             1.31 

(1.04–1.65) 0.023

OR, objective response; CI, confidence interval; INR, international normalized ratio; rad-score, radiomics score; phase 
1, axial T1-weighted contrast-enhanced equilibrium phase; phase 2, axial T2-weighted with fat suppression; phase 3, 
axial T2-weighted without fat suppression.
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and axial T1W-CE-Eq) other than the arterial 
phase for texture analysis.

The rad-scores constructed with the LAS-
SO were significantly associated with a treat-
ment response for all phases in this study. Al-
though the inclusion of the rad-score in the 
clinical model did not statistically substan-
tially improve the AUC, it increased the sen-
sitivity in predicting the treatment response 
and improved model performance. The com-
bined clinical model-2 and model-3 showed 
enhanced AUCs of 0.863 and 0.880 with an 
explicit NRI and IDI.

There were several limitations to this 
study. First, the number of patients was lim-
ited due to the study’s retrospective nature. 
Therefore, internal or external validation 
analysis could not be performed. Second, the 
images analyzed in the study were obtained 
from two devices with different Tesla powers. 
This could have affected the texture analysis. 
However, to avoid this, normalization was 
applied to all images before segmentation. 
Third, the study did not evaluate other MRI se-
quences and dynamic contrast phases (portal 
phase). Despite all these limitations, the pres-
ent study demonstrated that the treatment 
outcomes of iCC patients undergoing TARE 
could be predicted with high accuracy by 
MRI-based radiomics prior to treatment. 

In radiomics models created by pre-treat-
ment MRIs, the response to TARE in iCC pa-
tients can be predicted with high accuracy. 
The combination of clinical factors, such as 
bilobar disease and texture analysis, could 
increase the power of the test. However, 
large-scale studies with multiparametric 

MRIs with internal and external validations 
are needed to reach a definitive conclusion 
and determine the advantages and disad-
vantages over the radiomics models. 
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A

B

Figure 2 shows the selection process of radiomics texture features in phases by the lowest absolute shrinkage and selection operator 
logistic regression model. The tuning parameter determined by maximizing the area under the curve in Figure A was used to select features 
with non-zero coefficients from the coefficient profiles plot in Figure B. The radiomics scores of the patients were calculated in each phase by 
multiplying the selected features with their respective coefficients: 

Radiomics score = intercept + coefficient × radiomics features

In each phase, rad-scores were calculated for each individual separately; that is, three rad-scores were obtained for each individual. Table 1 
shows the details of the selected features.
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