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PURPOSE
Early monitoring and intervention for patients with novel coronavirus disease-2019 (COVID-19) will 
benefit both patients and the medical system. Chest computed tomography (CT) radiomics provide 
more information regarding the prognosis of COVID-19.

METHODS
A total of 833 quantitative features of 157 COVID-19 patients in the hospital were extracted. By 
filtering unstable features using the least absolute shrinkage and selection operator algorithm, a 
radiomic signature was built to predict the prognosis of COVID-19 pneumonia. The main outcomes 
were the area under the curve (AUC) of the prediction models for death, clinical stage, and compli-
cations. Internal validation was performed using the bootstrapping validation technique.

RESULTS
The AUC of each model demonstrated good predictive accuracy [death, 0.846; stage, 0.918; compli-
cation, 0.919; acute respiratory distress syndrome (ARDS), 0.852]. After finding the optimal cut-off 
for each outcome, the respective accuracy, sensitivity, and specificity were 0.854, 0.700, and 0.864 
for the prediction of the death of COVID-19 patients; 0.814, 0.949, and 0.732 for the prediction of a 
higher stage of COVID-19; 0.846, 0.920, and 0.832 for the prediction of complications of COVID-19 
patients; and 0.814, 0.818, and 0.814 for ARDS of COVID-19 patients. The AUCs after bootstrapping 
were 0.846 [95% confidence interval (CI): 0.844–0.848] for the death prediction model, 0.919 (95% 
CI: 0.917–0.922) for the stage prediction model, 0.919 (95% CI: 0.916–0.921) for the complication 
prediction model, and 0.853 (95% CI: 0.852–0.0.855) for the ARDS prediction model in the internal 
validation. Based on the decision curve analysis, the radiomics nomogram was clinically significant 
and useful.

CONCLUSION
The radiomic signature from the chest CT was significantly associated with the prognosis of 
COVID-19. A radiomic signature model achieved maximum accuracy in the prognosis prediction. 
Although our results provide vital insights into the prognosis of COVID-19, they need to be verified 
by large samples in multiple centers.
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The novel coronavirus disease-2019 (COVID-19) has caused a global pandemic, which pres-
ents a threat to human health. The COVID-19 infection causes a fever, cough, and diarrhea, 
among other symptoms. It can affect several tissues, lead to rapid organ failure, and has a 

poor prognosis and high mortality rate. Once patients progress to a severe stage of pneumonia, 
over 60% of them die.1 To date, there is no effective treatment for COVID-19. However, early diag-
nosis, immediate patient isolation, and extensive vaccination could effectively prevent the trans-
mission of the SARS-CoV-2 virus.2 Accurate predictive models are needed to identify the risk of pa-
tients experiencing a poor clinical outcome and plan early intervention to improve outcomes.3-5
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A chest computed tomography (CT) scan 
combined with a positive molecular poly-
merase chain reaction (PCR) test is the most 
important diagnostic method for COVID-19. 
Compared with the test conducted in stan-
dard laboratories, the CT scan procedure has 
a faster turnaround time and can provide 
more detailed information about the prog-
nostic significance of the severity of lung 
damage. Several studies on quantitative CT 
radiomics or deep-learning techniques have 
shown the efficiency of a rapid diagnosis of 
COVID-19.6,7 It is unknown whether quanti-
tative CT radiomics could provide more in-
formation for patients. The quantitative im-
age provides data on clinical decisions and 
prediction prognoses in many fields,8,9 and 
radiomics provide more detailed informa-
tion on the severity of the lung damage and 
prognosis of patients with COVID-19.

In this paper, we have developed a ra-
diomics prediction model, a novel tool that 
extracts hundreds of quantitative features 
based on the shape, intensity, size, or vol-
ume of the target lesions, to predict the out-
comes of COVID-19.

Methods

Patients

We retrospectively analyzed 157 patients 
with confirmed positive results of COVID-19 
from a viral nucleic acid reverse transcrip-
tion-PCR test of respiratory secretions via 
a nasopharyngeal or oropharyngeal swab 
in Wuhan Leishenshan Hospital. The Ethics 
Committee of Shanghai Sixth’s People’s Hos-

pital approved this retrospective study, and 
written informed consent was waived (ap-
proval no.: 2020-KY-013). 

All patients’ first CT scans after hospital-
ization were included (Incisive CT, Philips 
Healthcare and Revolution Maxima, GE 
Healthcare). The scanning range was from 
the apex to the lung base. The main scan-
ning parameters were as follows: tube volt-
age = 120 kVp, tube current = 360 mAs/287 
mAs, matrix = 512 × 512, slice thickness = 5 
mm, spacing between slices = 5 mm, field 
of view = 350 mm × 350 mm, window lev-
el = 600 Hounsfield units (HU), and window 
width = 1.200 HU.

Clinical variables and the primary outcome

Clinical data were collected, including the 
clinical signs and symptoms (fever, headac-
he, cough, expectoration, fatigue, dyspnea, 
nausea and vomiting, diarrhea, arthralgia, 
and myalgia), imaging results, demographic 
variables (age, sex, smoking status, and time 
between onset of symptoms to admission), 
and medical history (comorbidities, respira-
tory diseases, diabetes, hypertension, coro-
nary artery disease, cerebrovascular disease, 
cancer, and chronic renal disease). 

The primary endpoint in the study was 
efficacy in the predictions of death, clinical 
stage, and complications. Complications, inc-
luding stroke, acute kidney injury, acute res-
piratory distress syndrome (ARDS), and heart 
failure, which appeared secondary to pneu-
monia, were defined as positive if the patient 
had one or more of these complications.

Image segmentation and blinding

All non-contrasted CT images were per-
formed using ITK-SNAP software (version 
2.2.0; www.itksnap.org) for manual segmen-
tation of the regions of interest (ROIs). Since 
the presence of lesions interfered with the 
automatic identification of the chest, we 
manually delineated along the edge of the 
pulmonary parenchyma, slice by slice, for 
each patient. A three-dimensional ROI of 
the whole lung was then automatically ge-
nerated by the software. The hilus pulmonis 
and the trachea were also included in the 
ROI (Figure 1). All the images were evaluated 
by two experienced radiologists who were 
blinded to the patients’ clinical information 
(Ran-ying Zhang, Reader 1, with seven years 
of radiologist experience; Ting Yao, Reader 2, 
with four years of experience).

Radiomic signature building

Figure 1 demonstrates our workflow. The 
radiomic features were extracted from each 
ROI using PyRadiomics on Python (version 
3.7).10 Before extraction, all the chest CT ima-
ges were subjected to image normalization 
(the intensity of the image was scaled to 
0–500). During the normalization process, 
the binwidth was set to 25, and the intensity 
of the image of from 1 to 25 bin, 26 to 50, 51 
to 75 and so on was regarded as the same 
intensity in avoid of diversity due to the dif-
ferent parameter setting of CT ma chine and 
personal difference. Then, the normalized 
image was resampled to the same resolution 
(1 mm × 1 mm × 1 mm) using the interpo-
lation method of sitkBSpline to avoid any 

Main points

• Early monitoring and intervention for 
patients with coronavirus disease-2019 
(COVID-19) will benefit both patients and 
the medical system.

• Chest computed tomography (CT) radiom-
ics provide more information for the prog-
nosis of COVID-19 pneumonia.

• The area under the curve of each model 
demonstrated good predictive accuracy 
[death: 0.846; stage: 0.918; complication: 
0.919; acute respiratory distress syndrome 
(ARDS): 0.852]. After finding the optimal 
cut-off for each outcome, the respective 
accuracy, sensitivity, and specificity were 
0.854, 0.700, and 0.864 for the prediction 
of death of COVID-19 patients; 0.814, 0.949, 
and 0.732 for the prediction of higher-stage 
COVID-19; 0.846, 0.920, and 0.832 for the 
prediction of complications of COVID-19; 
and 0.814, 0.818, and 0.814 for ARDS in 
COVID-19 patients.

Figure 1. Schematic diagram of the proposed workflow. ICC, inter-class correlation coefficient.
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possible data heterogeneity. This procedure 
was followed by a filtering process to imple-
ment image smoothing. After filtering, the 
radiomic features were extracted from the 
ROI of the original image and its correspon-
ding filtered results, which included featu-
res of first-order statistics, shape, grey-level 
co-occurrence matrix, grey-level run-length 
matrix, grey-level size-zone matrix, gray-level 
dependence matrix, and wavelet features.

The radiomic features of all patients were 
standardized using the z-score method. Int-
ra-/inter-class correlation coefficients (ICCs) 
were calculated for each extracted radiomic 
feature, and those with ICCs of >0.8 were se-
lected. In addition, we calculated the P value 
of the paired t-test for radiomic features with 
ICCs of >0.8. We chose the least absolute 
shrinkage and selection operator (LASSO) 
algorithm to complete the radiomic signatu-
re building and form radiomic models with 
features of non-zero regression coefficients. 
Each endpoint (stage, death, complicati-
on, respiratory failure) had a corresponding 
model. In total, four radiomic models were 
constructed to predict the occurrence of the 
endpoints.

To build a predictive radiomics model for 
each outcome, we followed several steps. 
First, the method of normalization to z dist-
ribution [(value – mean value)/standard 
deviation] was applied for each extracted 
feature. Second, the ICCs were calculated for 
each extracted radiomic feature, and those 
with ICCs of >0.8 were selected. Third, the 
LASSO algorithm was applied for further fea-
ture reduction. The most significant features 
with the smallest deviance were then selec-
ted using the LASSO algorithm for the final 
features. The LASSO algorithm is a penalized 
regression method that has been successful-
ly applied to oncologic research. The LASSO 
algorithm can estimate the regression co-
efficients by maximizing the log-likelihood 
function (or the sum of squared residuals) 
with the constraint, reduce the coefficients 
of indistinctive covariates to zero, and enable 
the non-zero features to be combined into a 
radiomics model.11,12 With this model, the risk 
score for each patient was calculated using 
the following formula weighted by regressi-
on coefficients for each outcome: risk score = 
constant + coefficients × features.

Statistical analysis

The predictive accuracy of the radiomic 
signature was evaluated using a receiver 
operating characteristic curve analysis. To 
determine the optimal cut-off value to pre-

dict each outcome, the Youden index was 
calculated for all possible cut-off values (c) 
[(Youden index = maxc (sensitivity + specifi-
city – 1)],13 and the value of c that achieves 
the maximized index was considered opti-
mal. For each model, the accuracy, sensitivity, 
and specificity were also measured using the 
defined optimal cut-off values. For internal 
validation, the corrected area under the cur-
ve (AUC) was calculated using bootstrapping 
validation (1,000 bootstrap resamples).14 In 
addition, a decision curve analysis (DCA) was 
performed to evaluate the clinical usefulness 
of the radiomic signature by quantifying the 
net benefit at different threshold probabili-
ties.15 

To explore the clinical utility of the addi-
tion of a radiomics signature for each out-
come to the models with only clinical data 
included, we first constructed the clinical 
model using stepwise backward regression. 
We initially included the demographics of 
patients, their symptoms, and their past me-
dical history by calculating the AUC for each 
outcome. Then, the AUC was calculated for 
the mixed models by including the clinical 
models and radiomics signature. Meanwhile, 
the net reclassification index (NRI), an alter-
native to AUC to assess the improvement in 
risk prediction and measure the usefulness 
of a new model,16 was calculated to evaluate 
the clinical benefits and utility of the mixed 
models compared with the clinical models. 
A statistical analysis was performed using 
R software (version 3.5.0, packages: irr, ca-
ret, glmnet, caTools, OptimalCutpoints, rms, 
rmda), and P < 0.05 was considered statisti-
cally significant.17 

Results

Patient characteristics

We collected data from 157 patients in 
Wuhan Leishenshan Hospital between Feb-
ruary 19, 2020, and April 10, 2020. The mean 
(standard deviation) age of these patients 
was 63.13 (14.14), and 86 of them were wo-
men (55.13%). At hospital admission, 59 pa-
tients were severe, and 25 patients had seve-
re complications. The overall mortality was 
6.3% (Table 1). 

Feature selection and radiomic signature 
building

For each ROI, a total of 833 quantitative 
features were extracted. Using an ICC of 0.80 
as a cut-off for determining good reproduci-
bility, a total of 257 radiomic features were 
selected for the next assessment. As shown 

in Supplementary Table 1, almost all the P 
values of the paired t-test for radiomic featu-
res for all 257 radiomic features were larger 
than 0.05. After applying the LASSO logistic 
algorithm, 60 radiomic features were used to 
develop all the radiomic models. 

As shown in Table 2, the AUC of each mo-
del demonstrated good predictive accuracy 
(death model, 0.846; stage model, 0.918; 
complications model, 0.919; ARDS model, 
0.852). After finding the optimal cut-off for 
each outcome, the respective accuracy, 
sensitivity, and specificity were 0.854, 0.700, 
and 0.864 for the prediction of death of CO-
VID-19 patients; 0.814, 0.949, and 0.732 for 
the prediction of higher-stage COVID-19; 
0.846, 0.920, and 0.832 for the prediction 
of complications of COVID-19 patients; and 
0.814, 0.818, and 0.814 for ARDS of COVID-19 
patients. The AUCs after bootstrapping were 
0.846 for the death prediction model, 0.919 
for the stage prediction model, 0.919 for the 
complications prediction model, and 0.853 
for the ARDS prediction model in the internal 
validation, which indicates that the models 
were stable. The DCA for the four radiomic 
models with different endpoints is presented 
in Figure 2 and shows good performance in 
terms of clinical application. 

We next explored the clinical utility of 
the addition of the radiomics signature for 
each outcome to the models with only cli-
nical data included. As shown in Table 3, 
the AUCs of the clinical models were 0.728, 
0.952, 0.726, and 0.861 for the higher stage, 
death, complications, and ARDS prediction 
models, respectively. After combining the 
radiomics signatures and clinical parameters, 
the AUCs of the mixed models were 0.925, 
0.990, 0.929, and 0.903 for the higher stage, 
death, complications, and ARDS prediction 
models, respectively. The AUCs of the mixed 
models were higher than the clinical models. 
In addition, a significantly increased NRI (sta-
ge: P < 0.001; death: P = 0.013; complications: 
P < 0.001; ARDS: P < 0.001) was found for the 
mixed models compared with the clinical 
models. 

Discussion
In this study, we described a prediction 

model for COVID-19 based on radiomic sig-
natures. Based on the first CT scan after hos-
pitalization, we can predict the prognosis of 
these patients early with high accuracy and 
intervene where necessary.

COVID-19 can influence several tissu-
es and lead to organ failure rapidly. It has a 
poor prognosis and a high mortality rate. A 
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chest CT combined with a positive molecu-
lar PCR test is the most important diagnostic 
method for COVID-19. Compared with tests 
conducted in standard laboratories, the CT 
scan procedure has a faster turnaround time 
and can provide more detailed information 
regarding lung damage severity and acute 
respiratory failure.18,19 Features of CT images 

can present with ground-glass opacities, li-
near opacities, consolidation, bronchial wall 
thickening, lymph node enlargement, peri-
cardial effusion, or pleural effusion. However, 
the CT characteristics in some stages are so-
mewhat similar, such as in severe and critical 
cases. Therefore, a single qualitative radio-
logical diagnosis cannot fully meet our ne-

eds to predict the prognosis of the disease. 
Radiomics features can quantitatively reflect 
the invisible details of the lesions. First-order 
features (e.g., entropy, skewness, and kurto-
sis) describe the distribution of the values of 
individual voxels without concern for spatial 
relationships. Second-order (texture) featu-
res describe the statistical interrelationships 

Table 1. Clinical characteristics

Characteristics Overall Survival cases Death cases

Sex, n (%)

Female 86 (55.13) 81 (55.1) 5 (55.56)

Male 70 (44.87) 66 (44.9) 4 (44.44)

Age, mean (SD) 63.13 (14.14) 62.44 (14.14) 74.56 (8.35)

Smoking 

No 145 (94.16) 138 (93.88) 7 (100)

Yes 9 (5.84) 9 (6.12) 0 (0)

Clinical symptoms

Fever, n (%) 96 (62.34) 92 (62.59) 4 (57.14)

Cough, n (%) 98 (63.64) 93 (63.27) 5 (71.43)

Chest pain, n (%) 40 (25.97) 37 (25.17) 3 (42.86)

Hypodynamia (%) 75 (48.7) 73 (49.66) 2 (28.57)

Diarrhea, n (%) 15 (9.74) 15 (10.2) 0 (0)

Comorbidities

Diabetes, n (%) 35 (22.73) 34 (23.13) 1 (14.29)

HTN, n (%) 76 (49.35) 72 (48.98) 4 (57.14)

Respiratory diseases, n (%) 14 (9.09) 13 (8.84) 1 (14.29)

Heart diseases, n (%) 28 (18.3) 28 (19.18) 0 (0)

Tumors, n (%) 6 (3.9) 5 (3.4) 1 (14.29)

Stage, n (%)

Mild 97 (62.18) 97 (65.99) 0 (0)

Severe 59 (37.82) 50 (34.01) 9 (100)

Complication, n (%)

No 131 (83.97) 130 (88.44) 1 (11.11)

Yes 25 (16.03) 17 (11.56) 8 (88.89)

Respiratory failure, n (%) 19 (12.18) 13 (8.84) 6 (66.67)

ARDS, n (%) 11 (7.05) 5 (3.4) 6 (66.67)

Heart failure, n (%) 7 (4.49) 5 (3.4) 2 (22.22)

AKI, n (%)

0 143 (91.67) 139 (94.56) 4 (44.44)

1 7 (4.49) 3 (2.04) 4 (44.44)

2 2 (1.28) 2 (1.36) 0 (0)

3 4 (2.56) 3 (2.04) 1 (11.11)

WBC, median (Q1, Q3) 5.92 (4.71, 7.29) 5.91 (4.7, 7.17) 6.48 (5.08, 10.36)

CRP, median (Q1, Q3) 2.91 (0.5, 19.66) 2.37 (0.5, 15.18) 40 (22.22, 108.8)

Lymphocyte, median (Q1, Q3) 1.33 (0.84, 1.75) 1.37 (0.88, 1.75) 0.54 (0.19, 0.72)

Time between onset of symptoms to admission, median (Q1, Q3) 22 (15, 30) 22 (15.5, 30.5) 20 (13, 23.75)

AKI, acute kidney injury; SD, standard deviation; WBC, white blood cells; CRP, C-reactive protein; ARDS, acute respiratory distress syndrome; HTN, hypertension.
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between voxels with similar (or dissimilar) 
contrast values. Higher-order statistical met-
hods impose filter grids on the image to ext-
ract repetitive or non-repetitive patterns. For 
instance, among the final selected features, 
firstorder_10Percentile indicated the 10th 
percentile of intensity in the ROI, which may 
reflect the relationship between the density 
of lesions and the disease grade.

Several studies on CT radiomics and the 
deep-learning technique have shown the ef-
ficiency of a rapid diagnosis of COVID-19. In a 
large cohort of 3,777 patients, the artificial in-
telligence diagnostic model can differentiate 
NCP from other common pneumonia with 
92.49% accuracy, 94.93% sensitivity, 91.13% 
specificity, and an area under the ROC curve 
of 0.9797.6 Another deep-learning artificial 
intelligence-enabled rapid diagnosis system 
also showed a clinical benefit. However, stu-
dies focusing on prognosis prediction using 
quantitative image features are rare. Our re-
search was the first study to investigate the 
role of CT radiomics in predicting the prog-
nosis of patients with COVID-19. The AUCs of 
each model demonstrated good predictive 
accuracy (0.85–0.92). The DCA also indicated 

a good performance in terms of clinical app-
lication. 

Several retrospective cohort studies have 
described the multi-organ damage caused 
by COVID-19, including respiratory, cardio-
vascular, digestive, urinary, endocrine, and 
nervous system damage.20,21 Accurate predi-
ctive models are needed to identify the risk 
of patients experiencing a poor clinical out-
come and plan early intervention to impro-
ve outcomes. Previous studies have found 
several variables that are risk factors for a 
severe prognosis related to COVID-19 and 
have built effective prediction models for pa-
tient management.22,23 The following factors 
contain comprehensive clinical data: chest 
radiography abnormality, age, interleukin-6, 
dyspnea, number of comorbidities, cancer 
history, lower lymphocyte count, higher la-
ctate dehydrogenase neutrophil-to-lympho-
cyte ratio, lactate dehydrogenase, creatinine, 
and direct bilirubin. However, these data rely 
on large data collection samples and patient 
follow ups for the entire study, which might 
lead to economic issues. In our preliminary 
study, the first CT image on arrival at the 
medical center could bring us more infor-

mation than chest lesions. An important ad-
vancement in the use of imaging is assisting 
clinical management in identifying high-risk 
groups and intervening early to reduce mor-
tality. However, the lack of widely used CT 
scanning equipment and experienced radi-
ologists might affect the clinical application 
of these prediction models. Similar to pre-
vious research, the data models used in the 
present research relied on accurate labeling 
by professional radiologists. Moreover, the 
clinical characteristics and outcomes were 
estimated by the expert radiologists for the 
description of the state of the patient but 
did not consider the real severity.5 One limi-
tation of this study is the small sample size 
for validation and the use of patients in the 
same country, which could cause bias. This 
retrospective study could also contain mis-
sing data. Additional prospective global mul-
ti-center validation studies of COVID-19 are 
recommended.

In conclusion, the radiomic signature 
provided vital information for predicting 
the prognosis of COVID-19. We built a model 
consisting of a radiomic signature that had 
maximum accuracy in the prediction of the 

Figure 2. Predictive accuracy of the radiomic signature, as evaluated by the Harrell’s C-index. (a) Predictive value for death; (b) predictive value for stage; (c) predictive 
value for complications; (d) predictive value for acute respiratory distress syndrome.

Table 2. AUC and NRI with the corresponding P value of the clinical models and mixed models for predicting the outcome and NRI value to 
compare COVID-19 patients

AUC for the clinical model (SE, 95% CI) AUC for the mixed models (SE, 95% CI) NRI P value1

Stage 0.728 (0.042, 0.646- 0.809) 0.925 (0.020, 0.885-0.966) 1.34 <0.001

Death 0.952 (0.018, 0.917-0.986) 0.990 (0.019, 0.953-1.000) 0.280 0.013

Complications 0.726 (0.056, 0.616-0.836) 0.929 (0.043, 0.844-0.969) 1.064 <0.001

ARDS 0.861 (0.058, 0.748-0.975) 0.903 (0.060, 0.786-1.000) 0.787 <0.001
1P < 0.05 indicated the calculated NRI was statistically significant. AUC, area under curve; SE, standard error; CI, confidence interval; NRI, net reclassification index; ARDS, acute 
respiratory distress syndrome; COVID-19, coronavirus disease-2019.

Table 3. Efficacy of the radiomic signature in the prediction of the outcome

Outcome Harrell’s C-index C-index after bootstrap (95% CI) Accuracy Sensitivity Specificity

Stage 0.918 0.919 (0.917–0.922) 0.814 0.949 0.732

Death 0.846 0.846 (0.844–0.848) 0.854 0.700 0.864

Complications 0.919 0.919 (0.916–0.921) 0.846 0.920 0.832

ARDS 0.852 0.853 (0.852–0.855) 0.814 0.818 0.814

CI, confidence interval; ARDS, acute respiratory distress syndrome.
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prognosis. Our study provided vital insight 
into important preoperative clinical decisi-
ons and is expected to be applied in multiple 
medical centers to optimize future diagnoses 
and treatments.
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Supplementary Table 1. Results of paired samples t-test and interclass or intraclass correlation coefficient calculations for radiomics 
paramaters

Paramater
Inter-class correlation coefficients Paired samples t-test

Same researcher at 
different time

Different researcher 
at same time

Same researcher 
at different time

Different researcher at 
same time

original_firstorder_10Percentile 0.999997 0.998569 0.340784 0.89771

original_firstorder_90Percentile 0.931262 0.912729 0.077749 0.29402

original_firstorder_Energy 0.981199 0.951514 0.104202 0.77724

original_firstorder_Entropy 0.976015 0.86105 0.081715 0.773565

original_firstorder_InterquartileRange 0.970405 0.894157 0.211248 0.899302

original_firstorder_Kurtosis 0.804423 0.816997 0.027186 0.150026

original_firstorder_Mean 0.998257 0.996387 0.09966 0.616588

original_firstorder_MeanAbsoluteDeviation 0.956756 0.854623 0.071953 0.490757

original_firstorder_Median 0.999905 0.998343 0.33764 0.579896

original_firstorder_Minimum 0.999795 0.970584 0.305204 0.994862

original_firstorder_Range 0.985947 0.881659 0.259128 0.710139

original_firstorder_RobustMeanAbsoluteDeviation 0.947647 0.876259 0.126852 0.726577

original_firstorder_RootMeanSquared 0.997488 0.993777 0.091024 0.565349

original_firstorder_Skewness 0.902097 0.93577 0.040829 0.369576

original_firstorder_TotalEnergy 0.981199 0.951514 0.104202 0.77724

original_firstorder_Uniformity 0.989356 0.818425 0.067482 0.994303

original_firstorder_Variance 0.981203 0.847101 0.09128 0.458786

original_glcm_Autocorrelation 0.986151 0.892283 0.2128 0.902616

original_glcm_ClusterProminence 0.989671 0.893246 0.29526 0.433852

original_glcm_ClusterShade 0.988522 0.890284 0.208842 0.379651

original_glcm_ClusterTendency 0.981285 0.869552 0.094478 0.477418

original_glcm_Contrast 0.99549 0.803835 0.10815 0.531676

original_glcm_DifferenceVariance 0.994748 0.807939 0.09233 0.53265

original_glcm_JointAverage 0.993272 0.825104 0.121628 0.937817

original_glcm_SumEntropy 0.978179 0.89127 0.077978 0.793367

original_glcm_SumSquares 0.983116 0.864382 0.094545 0.479741

original_gldm_DependenceEntropy 0.976726 0.853071 0.073941 0.817061

original_gldm_GrayLevelNonUniformity 0.998773 0.872752 0.049065 0.957319

original_gldm_GrayLevelVariance 0.981222 0.847155 0.091383 0.458466

original_gldm_HighGrayLevelEmphasis 0.985763 0.887965 0.200588 0.850271

original_gldm_SmallDependenceHighGrayLevelEmphasis 0.990101 0.899873 0.247325 0.48425

original_glrlm_GrayLevelNonUniformityNormalized 0.919503 0.939251 0.064681 0.603984

original_glrlm_GrayLevelVariance 0.980288 0.868816 0.071361 0.478433

original_glrlm_HighGrayLevelRunEmphasis 0.983907 0.90651 0.149272 0.851096

original_glrlm_LongRunHighGrayLevelEmphasis 0.973192 0.899739 0.316009 0.928954

original_glrlm_ShortRunHighGrayLevelEmphasis 0.983982 0.905354 0.144339 0.790248

original_glszm_GrayLevelNonUniformity 0.997252 0.828012 0.138214 0.565119

original_glszm_GrayLevelVariance 0.993678 0.816953 0.076984 0.464003

original_glszm_HighGrayLevelZoneEmphasis 0.987263 0.926078 0.107404 0.683375

original_glszm_SizeZoneNonUniformity 0.997713 0.887896 0.052518 0.378143

original_glszm_SizeZoneNonUniformityNormalized 0.995576 0.968844 0.954024 0.794447

original_glszm_SmallAreaEmphasis 0.994757 0.960487 0.825246 0.867285

original_glszm_SmallAreaHighGrayLevelEmphasis 0.990794 0.93481 0.132973 0.643441

original_glszm_ZonePercentage 0.996098 0.822963 0.090173 0.608169

original_ngtdm_Complexity 0.996361 0.872722 0.377178 0.592898
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Supplementary Table 1. Continues

Paramater
Inter-class correlation coefficients Paired samples t-test

Same researcher at 
different time

Different researcher 
at same time

Same researcher 
at different time

Different researcher at 
same time

original_shape_Flatness 0.990597 0.82496 0.250526 0.609563

original_shape_LeastAxisLength 0.99722 0.943945 0.314855 0.662473

original_shape_MajorAxisLength 0.999914 0.995239 0.04126 0.453035

original_shape_Maximum2DDiameterColumn 0.997574 0.979956 0.121475 0.595147

original_shape_Maximum2DDiameterSlice 0.999441 0.997251 0.221079 0.093845

original_shape_Maximum3DDiameter 0.990835 0.933314 0.523592 0.572199

original_shape_MeshVolume 0.992537 0.979207 0.094729 0.745679

original_shape_MinorAxisLength 0.993714 0.987656 0.183195 0.787999

original_shape_Sphericity 0.993593 0.963324 0.863871 0.437983

original_shape_SurfaceArea 0.991339 0.967048 0.102698 0.902472

original_shape_SurfaceVolumeRatio 0.99673 0.97189 0.207659 0.89069

original_shape_VoxelVolume 0.992549 0.97913 0.095193 0.747323

wavelet.HHH_firstorder_Energy 0.992533 0.978802 0.091866 0.74983

wavelet.HHH_firstorder_Entropy 0.9976 0.853074 0.339822 0.570975

wavelet.HHH_firstorder_Kurtosis 0.987216 0.943184 0.108393 0.801723

wavelet.HHH_firstorder_Mean 0.956551 0.870222 0.07011 0.988223

wavelet.HHH_firstorder_RootMeanSquared 0.983791 0.881095 0.070903 0.634193

wavelet.HHH_firstorder_TotalEnergy 0.992533 0.978802 0.091866 0.74983

wavelet.HHH_firstorder_Uniformity 0.996915 0.867726 0.340438 0.575115

wavelet.HHH_glcm_SumSquares 0.996365 0.873037 0.333482 0.578942

wavelet.HHH_gldm_DependenceNonUniformity 0.993546 0.903916 0.093858 0.592758

wavelet.HHH_gldm_GrayLevelNonUniformity 0.992541 0.979206 0.095415 0.750379

wavelet.HHH_gldm_GrayLevelVariance 0.997083 0.872956 0.340921 0.589302

wavelet.HHH_glrlm_GrayLevelNonUniformity 0.992771 0.952948 0.09509 0.663165

wavelet.HHH_glrlm_GrayLevelNonUniformityNormalized 0.997063 0.868934 0.28946 0.565452

wavelet.HHH_glrlm_GrayLevelVariance 0.997263 0.875035 0.327481 0.584239

wavelet.HHH_glrlm_RunLengthNonUniformity 0.993162 0.909943 0.09408 0.606215

wavelet.HHH_glszm_GrayLevelNonUniformity 0.997211 0.924464 0.1783 0.501813

wavelet.HHH_glszm_SizeZoneNonUniformity 0.994287 0.898315 0.614822 0.517346

wavelet.HHH_glszm_ZonePercentage 0.994332 0.890479 0.582649 0.498157

wavelet.HHH_ngtdm_Coarseness 0.995103 0.922732 0.295053 0.577228

wavelet.HHL_firstorder_Energy 0.992573 0.97842 0.095536 0.752877

wavelet.HHL_firstorder_Kurtosis 0.995111 0.934285 0.128894 0.58736

wavelet.HHL_firstorder_Mean 0.958346 0.983521 0.061073 0.284902

wavelet.HHL_firstorder_TotalEnergy 0.992573 0.97842 0.095536 0.752877

wavelet.HHL_glcm_ClusterProminence 0.995852 0.826601 0.386051 0.81669

wavelet.HHL_gldm_SmallDependenceHighGrayLevelEmphasis 0.999973 0.869799 0.37208 0.478685

wavelet.HHL_ngtdm_Coarseness 0.997978 0.818081 0.373987 0.668612

wavelet.HHL_ngtdm_Complexity 0.999973 0.836216 0.90023 0.613464

wavelet.HLH_firstorder_Energy 0.992497 0.978972 0.09724 0.760804

wavelet.HLH_firstorder_Mean 0.812382 0.841375 0.254883 0.913161

wavelet.HLH_firstorder_TotalEnergy 0.992497 0.978972 0.09724 0.760804

wavelet.HLH_firstorder_Variance 0.999676 0.800837 0.309301 0.523766

wavelet.HLH_glcm_ClusterProminence 0.997213 0.964836 0.25719 0.19153

wavelet.HLH_glcm_DifferenceVariance 0.998513 0.808758 0.731429 0.454816
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Supplementary Table 1. Continues

Paramater
Inter-class correlation coefficients Paired samples t-test

Same researcher at 
different time

Different researcher 
at same time

Same researcher 
at different time

Different researcher at 
same time

wavelet.HLH_gldm_GrayLevelNonUniformity 0.992458 0.980414 0.096699 0.831004

wavelet.HLH_gldm_GrayLevelVariance 0.998752 0.851739 0.347758 0.344964

wavelet.HLH_gldm_LargeDependenceHighGrayLevelEmphasis 0.999988 0.809386 0.543159 0.65892

wavelet.HLH_gldm_SmallDependenceHighGrayLevelEmphasis 0.999972 0.825346 0.581967 0.565302

wavelet.HLH_glrlm_GrayLevelNonUniformity 0.994352 0.85521 0.095236 0.699494

wavelet.HLH_glrlm_GrayLevelVariance 0.998828 0.860282 0.385184 0.343714

wavelet.HLH_glszm_SizeZoneNonUniformity 0.998773 0.827246 0.048067 0.326173

wavelet.HLH_glszm_SmallAreaHighGrayLevelEmphasis 0.984661 0.803754 0.267622 0.857598

wavelet.HLH_glszm_ZonePercentage 0.996543 0.810394 0.135219 0.334475

wavelet.HLH_ngtdm_Coarseness 0.995668 0.836895 0.215283 0.564965

wavelet.HLH_ngtdm_Complexity 0.999999 0.815922 0.710351 0.649103

wavelet.HLH_ngtdm_Strength 0.999796 0.918313 0.395136 0.77281

wavelet.HLL_firstorder_Energy 0.992859 0.978 0.091609 0.727026

wavelet.HLL_firstorder_Mean 0.970284 0.962328 0.091242 0.299141

wavelet.HLL_firstorder_Median 0.988699 0.949159 0.294879 0.531518

wavelet.HLL_firstorder_RootMeanSquared 0.997913 0.896491 0.076846 0.689229

wavelet.HLL_firstorder_TotalEnergy 0.992859 0.978 0.091609 0.727026

wavelet.HLL_glcm_Idn 0.999305 0.895923 0.41531 0.670298

wavelet.HLL_glrlm_GrayLevelNonUniformity 0.997355 0.830152 0.114151 0.692293

wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis 0.959884 0.801546 0.146286 0.490789

wavelet.HLL_ngtdm_Coarseness 0.998071 0.920443 0.450353 0.670578

wavelet.LHH_firstorder_Energy 0.992543 0.978972 0.10106 0.760804

wavelet.LHH_firstorder_Entropy 0.999483 0.858038 0.397848 0.461672

wavelet.LHH_firstorder_Kurtosis 0.986817 0.936929 0.068087 0.951105

wavelet.LHH_firstorder_Mean 0.983004 0.963404 0.965327 0.384285

wavelet.LHH_firstorder_Median 0.837757 0.883881 0.883249 0.7669

wavelet.LHH_firstorder_RootMeanSquared 0.969978 0.840774 0.990503 0.404368

wavelet.LHH_firstorder_TotalEnergy 0.992543 0.978972 0.10106 0.760804

wavelet.LHH_firstorder_Uniformity 0.99912 0.871824 0.258251 0.448879

wavelet.LHH_firstorder_Variance 0.999802 0.816434 0.245848 0.586159

wavelet.LHH_glcm_ClusterProminence 0.998194 0.848527 0.221417 0.523894

wavelet.LHH_glcm_DifferenceEntropy 0.99955 0.838622 0.935167 0.642927

wavelet.LHH_glcm_DifferenceVariance 0.999334 0.879789 0.960564 0.655147

wavelet.LHH_glcm_JointEntropy 0.999484 0.854578 0.663912 0.515146

wavelet.LHH_glcm_SumSquares 0.999241 0.889891 0.399138 0.42814

wavelet.LHH_gldm_DependenceNonUniformity 0.993966 0.900768 0.102525 0.710826

wavelet.LHH_gldm_GrayLevelNonUniformity 0.992463 0.979784 0.09628 0.788401

wavelet.LHH_gldm_GrayLevelVariance 0.999191 0.884752 0.349828 0.435273

wavelet.LHH_gldm_LargeDependenceHighGrayLevelEmphasis 0.98298 0.83397 0.338624 0.63401

wavelet.LHH_glrlm_GrayLevelNonUniformity 0.994184 0.840796 0.099308 0.662251

wavelet.LHH_glrlm_GrayLevelNonUniformityNormalized 0.999397 0.878896 0.371097 0.426207

wavelet.LHH_glrlm_GrayLevelVariance 0.999255 0.887979 0.392979 0.429678

wavelet.LHH_glrlm_LongRunHighGrayLevelEmphasis 0.980785 0.813507 0.338373 0.630056
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Supplementary Table 1. Continues

Paramater
Inter-class correlation coefficients Paired samples t-test

Same researcher at 
different time

Different researcher 
at same time

Same researcher 
at different time

Different researcher at 
same time

wavelet.LHH_glszm_ZonePercentage 0.999538 0.88587 0.805809 0.328586

wavelet.LHH_ngtdm_Coarseness 0.994722 0.827216 0.254063 0.579548

wavelet.LHH_ngtdm_Complexity 0.998412 0.862594 0.344281 0.54478

wavelet.LHH_ngtdm_Strength 0.999182 0.950617 0.518519 0.698336

wavelet.LHL_firstorder_Energy 0.992982 0.977993 0.09054 0.737466

wavelet.LHL_firstorder_Kurtosis 0.985251 0.960151 0.21718 0.576139

wavelet.LHL_firstorder_Mean 0.989189 0.975507 0.206571 0.432871

wavelet.LHL_firstorder_Median 0.993039 0.960395 0.381912 0.757776

wavelet.LHL_firstorder_RootMeanSquared 0.998785 0.900936 0.269623 0.919027

wavelet.LHL_firstorder_TotalEnergy 0.992982 0.977993 0.09054 0.737466

wavelet.LHL_glcm_ClusterProminence 0.999094 0.821714 0.481395 0.962621

wavelet.LHL_glcm_Idn 0.988052 0.829679 0.243423 0.301559

wavelet.LHL_glcm_Imc2 0.921777 0.884274 0.075303 0.464799

wavelet.LHL_gldm_SmallDependenceHighGrayLevelEmphasis 0.999981 0.922039 0.10615 0.917856

wavelet.LHL_glrlm_LongRunHighGrayLevelEmphasis 0.994766 0.829221 0.123789 0.630026

wavelet.LHL_glrlm_RunEntropy 0.992932 0.814147 0.077034 0.935768

wavelet.LHL_glszm_SmallAreaHighGrayLevelEmphasis 0.99991 0.819829 0.10075 0.814189

wavelet.LHL_ngtdm_Coarseness 0.997763 0.907867 0.34602 0.687538

wavelet.LHL_ngtdm_Complexity 0.999964 0.847661 0.353431 0.842677

wavelet.LLH_firstorder_10Percentile 0.978338 0.861756 0.2552 0.586535

wavelet.LLH_firstorder_90Percentile 0.999921 0.972858 0.911368 0.826339

wavelet.LLH_firstorder_Energy 0.992656 0.979233 0.092076 0.736285

wavelet.LLH_firstorder_Entropy 0.999675 0.971114 0.1583 0.572401

wavelet.LLH_firstorder_InterquartileRange 0.998833 0.951668 0.278588 0.684967

wavelet.LLH_firstorder_Kurtosis 0.955345 0.956023 0.115104 0.195984

wavelet.LLH_firstorder_Maximum 0.999904 0.952952 0.167866 0.55534

wavelet.LLH_firstorder_Mean 0.957527 0.906466 0.352751 0.642735

wavelet.LLH_firstorder_MeanAbsoluteDeviation 0.999102 0.954881 0.228338 0.698042

wavelet.LLH_firstorder_Median 0.965658 0.885736 0.730984 0.925662

wavelet.LLH_firstorder_Minimum 0.999988 0.806223 0.343436 0.397651

wavelet.LLH_firstorder_Range 0.999979 0.912403 0.085281 0.639698

wavelet.LLH_firstorder_RobustMeanAbsoluteDeviation 0.99889 0.95315 0.286438 0.677357

wavelet.LLH_firstorder_RootMeanSquared 0.964063 0.922758 0.354273 0.655446

wavelet.LLH_firstorder_TotalEnergy 0.992656 0.979233 0.092076 0.736285

wavelet.LLH_firstorder_Uniformity 0.998027 0.963139 0.227154 0.554834

wavelet.LLH_firstorder_Variance 0.999634 0.96951 0.221421 0.474875

wavelet.LLH_glcm_ClusterProminence 0.999958 0.979225 0.339388 0.321153

wavelet.LLH_glcm_ClusterShade 0.992615 0.979219 0.901948 0.909563

wavelet.LLH_glcm_ClusterTendency 0.999786 0.986402 0.282204 0.274228

wavelet.LLH_glcm_DifferenceVariance 0.999782 0.803254 0.249572 0.697979

wavelet.LLH_glcm_Idmn 0.999972 0.800171 0.330608 0.226989

wavelet.LLH_glcm_Idn 0.999875 0.949396 0.299252 0.042735

wavelet.LLH_glcm_JointEnergy 0.999321 0.803753 0.252054 0.908083

wavelet.LLH_glcm_JointEntropy 0.999815 0.929506 0.172814 0.723083

wavelet.LLH_glcm_SumEntropy 0.999791 0.95771 0.186376 0.744586
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Supplementary Table 1. Continues

Paramater
Inter-class correlation coefficients Paired samples t-test

Same researcher at 
different time

Different researcher 
at same time

Same researcher 
at different time

Different researcher at 
same time

wavelet.LLH_gldm_DependenceNonUniformity 0.989604 0.823667 0.121778 0.686674

wavelet.LLH_gldm_DependenceVariance 0.990269 0.963407 0.354859 0.165496

wavelet.LLH_gldm_GrayLevelNonUniformity 0.992945 0.984785 0.103752 0.779552

wavelet.LLH_gldm_GrayLevelVariance 0.999734 0.973184 0.199483 0.380729

wavelet.LLH_gldm_SmallDependenceEmphasis 0.995889 0.835482 0.263067 0.779956

wavelet.LLH_glrlm_GrayLevelNonUniformityNormalized 0.999866 0.978885 0.213947 0.60723

wavelet.LLH_glrlm_GrayLevelVariance 0.999868 0.979676 0.302364 0.418486

wavelet.LLH_glszm_GrayLevelNonUniformity 0.945718 0.850553 0.034748 0.978811

wavelet.LLH_glszm_GrayLevelVariance 0.970813 0.839983 0.113992 0.664453

wavelet.LLH_glszm_SizeZoneNonUniformity 0.984696 0.855923 0.091929 0.844812

wavelet.LLH_glszm_ZonePercentage 0.992001 0.912203 0.202902 0.849231

wavelet.LLH_ngtdm_Complexity 1 0.833586 0.359565 0.608493

wavelet.LLH_ngtdm_Strength 0.999846 0.810294 0.347613 0.332152

wavelet.LLL_firstorder_10Percentile 0.999997 0.999439 0.301835 0.710013

wavelet.LLL_firstorder_90Percentile 0.934659 0.923225 0.078896 0.281365

wavelet.LLL_firstorder_Energy 0.972452 0.950174 0.106066 0.819672

wavelet.LLL_firstorder_Entropy 0.974177 0.918957 0.083673 0.798059

wavelet.LLL_firstorder_InterquartileRange 0.968017 0.912124 0.202452 0.847176

wavelet.LLL_firstorder_Maximum 0.956997 0.815744 0.160508 0.566333

wavelet.LLL_firstorder_Mean 0.998299 0.996389 0.099534 0.618757

wavelet.LLL_firstorder_MeanAbsoluteDeviation 0.954272 0.872252 0.072324 0.453276

wavelet.LLL_firstorder_Median 0.999906 0.998387 0.332724 0.550646

wavelet.LLL_firstorder_Minimum 1 0.987012 1 0.879349

wavelet.LLL_firstorder_Range 0.984956 0.927874 0.160508 0.659921

wavelet.LLL_firstorder_RobustMeanAbsoluteDeviation 0.943418 0.896723 0.123869 0.697487

wavelet.LLL_firstorder_RootMeanSquared 0.994469 0.985452 0.084579 0.524268

wavelet.LLL_firstorder_Skewness 0.89596 0.952381 0.042098 0.292629

wavelet.LLL_firstorder_TotalEnergy 0.972452 0.950174 0.106066 0.819672

wavelet.LLL_firstorder_Uniformity 0.989123 0.896448 0.066958 0.736956

wavelet.LLL_firstorder_Variance 0.979827 0.857975 0.091453 0.448699

wavelet.LLL_glcm_Autocorrelation 0.99588 0.901572 0.113141 0.914279

wavelet.LLL_glcm_ClusterProminence 0.988996 0.897991 0.295485 0.442857

wavelet.LLL_glcm_ClusterShade 0.988002 0.892853 0.209302 0.383499

wavelet.LLL_glcm_ClusterTendency 0.980493 0.875003 0.093982 0.470409

wavelet.LLL_glcm_Contrast 0.993183 0.863679 0.100833 0.49317

wavelet.LLL_glcm_DifferenceAverage 0.987753 0.818154 0.101494 0.668156

wavelet.LLL_glcm_DifferenceVariance 0.993249 0.861779 0.087696 0.483506

wavelet.LLL_glcm_InverseVariance 0.97276 0.811101 0.132027 0.502651

wavelet.LLL_glcm_JointAverage 0.996637 0.88368 0.096733 0.894735

wavelet.LLL_glcm_JointEntropy 0.983888 0.829103 0.090435 0.860867

wavelet.LLL_glcm_SumEntropy 0.975198 0.941017 0.08001 0.772539

wavelet.LLL_glcm_SumSquares 0.981578 0.874546 0.093701 0.470034

wavelet.LLL_gldm_DependenceEntropy 0.95646 0.973771 0.072763 0.671473

wavelet.LLL_gldm_DependenceNonUniformity 0.991417 0.837811 0.120744 0.520914

wavelet.LLL_gldm_DependenceNonUniformityNormalized 0.996895 0.807106 0.240026 0.695228
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Supplementary Table 1. Continues

Paramater
Inter-class correlation coefficients Paired samples t-test

Same researcher at 
different time

Different researcher 
at same time

Same researcher 
at different time

Different researcher at 
same time

wavelet.LLL_gldm_HighGrayLevelEmphasis 0.994784 0.896677 0.115249 0.853046

wavelet.LLL_gldm_LargeDependenceHighGrayLevelEmphasis 0.993485 0.807918 0.61861 0.180537

wavelet.LLL_gldm_SmallDependenceEmphasis 0.97975 0.816085 0.122701 0.700424

wavelet.LLL_gldm_SmallDependenceHighGrayLevelEmphasis 0.99369 0.903136 0.14232 0.508733

wavelet.LLL_gldm_SmallDependenceLowGrayLevelEmphasis 0.999841 0.847811 0.492586 0.315844

wavelet.LLL_glrlm_GrayLevelNonUniformity 0.996362 0.998659 0.047327 0.478971

wavelet.LLL_glrlm_GrayLevelNonUniformityNormalized 0.972085 0.945134 0.063713 0.951928

wavelet.LLL_glrlm_GrayLevelVariance 0.979409 0.864066 0.081358 0.442235

wavelet.LLL_glrlm_HighGrayLevelRunEmphasis 0.993533 0.905425 0.100201 0.810979

wavelet.LLL_glrlm_LongRunHighGrayLevelEmphasis 0.994926 0.885049 0.11525 0.760629

wavelet.LLL_glrlm_RunEntropy 0.910947 0.982523 0.076571 0.296386

wavelet.LLL_glrlm_ShortRunHighGrayLevelEmphasis 0.993121 0.906709 0.101465 0.756248

wavelet.LLL_glszm_GrayLevelNonUniformity 0.994386 0.859811 0.384187 0.822736

wavelet.LLL_glszm_GrayLevelVariance 0.99037 0.868936 0.094182 0.45735

wavelet.LLL_glszm_HighGrayLevelZoneEmphasis 0.991484 0.921692 0.082135 0.635025

wavelet.LLL_glszm_LargeAreaHighGrayLevelEmphasis 0.968182 0.89771 0.043252 0.058174

wavelet.LLL_glszm_SizeZoneNonUniformity 0.985194 0.91284 0.066956 0.382645

wavelet.LLL_glszm_SizeZoneNonUniformityNormalized 0.981661 0.964778 0.077366 0.291391

wavelet.LLL_glszm_SmallAreaEmphasis 0.979067 0.96374 0.086227 0.322612

wavelet.LLL_glszm_SmallAreaHighGrayLevelEmphasis 0.99303 0.926193 0.080552 0.571575

wavelet.LLL_glszm_ZonePercentage 0.975948 0.805756 0.132691 0.739583

wavelet.LLL_ngtdm_Coarseness 0.999928 0.810494 0.318255 0.507877

wavelet.LLL_ngtdm_Complexity 0.997228 0.910728 0.414899 0.626529

wavelet.LLL_ngtdm_Strength 0.979982 0.94111 0.509235 0.962508




