DIR

Diagn Interv Radiol 2023; DOI: 10.5152/dir.2022.21576

Copyright@Author(s) - Available online at dirjournal.org. Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CHEST IMAGING

ORIGINAL ARTICLE

Chest computed tomography radiomics to predict the outcome for patients with COVID-19 at an early stage

Shan Wu Ranying Zhang Xinjian Wan Ting Yao Qingwei Zhang Xiaohua Chen Xiaohong Fan

Shan Wu and Ranying Zhang contributed equally to this work.

From the Department of Endoscopy, (S.W., X.W.) Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology (R.Z.), Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China; Department of Infectious Disease (T.Y., X.C. Chenxiaohua2000@163.com), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology (Q.Z. Zhangqingweif@hotmail.com), Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China: Department of Respiratory Medicine. Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Department of Respiratory and Critical Care (X.F. Sfanxiaohong@shphc. org.cn), Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.

Received 18 June 2021; revision requested 05 July 2021; last revision received 01 December 2021; accepted 27 December 2021.

Epub: 18.01.2023

Publication date: 31.01.2023 DOI: 10.5152/dir.2022.21576

PURPOSE

Early monitoring and intervention for patients with novel coronavirus disease-2019 (COVID-19) will benefit both patients and the medical system. Chest computed tomography (CT) radiomics provide more information regarding the prognosis of COVID-19.

METHODS

A total of 833 quantitative features of 157 COVID-19 patients in the hospital were extracted. By filtering unstable features using the least absolute shrinkage and selection operator algorithm, a radiomic signature was built to predict the prognosis of COVID-19 pneumonia. The main outcomes were the area under the curve (AUC) of the prediction models for death, clinical stage, and complications. Internal validation was performed using the bootstrapping validation technique.

RESULTS

The AUC of each model demonstrated good predictive accuracy [death, 0.846; stage, 0.918; complication, 0.919; acute respiratory distress syndrome (ARDS), 0.852]. After finding the optimal cut-off for each outcome, the respective accuracy, sensitivity, and specificity were 0.854, 0.700, and 0.864 for the prediction of the death of COVID-19 patients; 0.814, 0.949, and 0.732 for the prediction of a higher stage of COVID-19; 0.846, 0.920, and 0.832 for the prediction of complications of COVID-19 patients; and 0.814, 0.818, and 0.814 for ARDS of COVID-19 patients. The AUCs after bootstrapping were 0.846 [95% confidence interval (CI): 0.844–0.848] for the death prediction model, 0.919 (95% CI: 0.917–0.922) for the stage prediction model, 0.919 (95% CI: 0.916–0.921) for the complication prediction model, and 0.853 (95% CI: 0.852–0.0.855) for the ARDS prediction model in the internal validation. Based on the decision curve analysis, the radiomics nomogram was clinically significant and useful.

CONCLUSION

The radiomic signature from the chest CT was significantly associated with the prognosis of COVID-19. A radiomic signature model achieved maximum accuracy in the prognosis prediction. Although our results provide vital insights into the prognosis of COVID-19, they need to be verified by large samples in multiple centers.

KEYWORDS

Radiomic signature, prognosis, COVID-19, prediction

The novel coronavirus disease-2019 (COVID-19) has caused a global pandemic, which presents a threat to human health. The COVID-19 infection causes a fever, cough, and diarrhea, among other symptoms. It can affect several tissues, lead to rapid organ failure, and has a poor prognosis and high mortality rate. Once patients progress to a severe stage of pneumonia, over 60% of them die.¹ To date, there is no effective treatment for COVID-19. However, early diagnosis, immediate patient isolation, and extensive vaccination could effectively prevent the transmission of the SARS-CoV-2 virus.² Accurate predictive models are needed to identify the risk of patients experiencing a poor clinical outcome and plan early intervention to improve outcomes.³⁻⁵

You may cite this article as: Wu S, Zhang R, Wan X, et al. Chest computed tomography radiomics to predict the outcome for patients with COVID-19 at an early stage. *Diagn Interv Radiol.* 2023;29(1):91-102.

A chest computed tomography (CT) scan combined with a positive molecular polymerase chain reaction (PCR) test is the most important diagnostic method for COVID-19. Compared with the test conducted in standard laboratories, the CT scan procedure has a faster turnaround time and can provide more detailed information about the prognostic significance of the severity of lung damage. Several studies on guantitative CT radiomics or deep-learning techniques have shown the efficiency of a rapid diagnosis of COVID-19.67 It is unknown whether quantitative CT radiomics could provide more information for patients. The guantitative image provides data on clinical decisions and prediction prognoses in many fields,^{8,9} and radiomics provide more detailed information on the severity of the lung damage and prognosis of patients with COVID-19.

In this paper, we have developed a radiomics prediction model, a novel tool that extracts hundreds of quantitative features based on the shape, intensity, size, or volume of the target lesions, to predict the outcomes of COVID-19.

Methods

Patients

We retrospectively analyzed 157 patients with confirmed positive results of COVID-19 from a viral nucleic acid reverse transcription-PCR test of respiratory secretions via a nasopharyngeal or oropharyngeal swab in Wuhan Leishenshan Hospital. The Ethics Committee of Shanghai Sixth's People's Hos-

Main points

- Early monitoring and intervention for patients with coronavirus disease-2019 (COVID-19) will benefit both patients and the medical system.
- Chest computed tomography (CT) radiomics provide more information for the prognosis of COVID-19 pneumonia.
- The area under the curve of each model demonstrated good predictive accuracy [death: 0.846; stage: 0.918; complication: 0.919; acute respiratory distress syndrome (ARDS): 0.852]. After finding the optimal cut-off for each outcome, the respective accuracy, sensitivity, and specificity were 0.854, 0.700, and 0.864 for the prediction of death of COVID-19 patients; 0.814, 0.949, and 0.732 for the prediction of higher-stage COVID-19; 0.846, 0.920, and 0.832 for the prediction of complications of COVID-19; and 0.814, 0.818, and 0.814 for ARDS in COVID-19 patients.

pital approved this retrospective study, and written informed consent was waived (approval no.: 2020-KY-013).

All patients' first CT scans after hospitalization were included (Incisive CT, Philips Healthcare and Revolution Maxima, GE Healthcare). The scanning range was from the apex to the lung base. The main scanning parameters were as follows: tube voltage = 120 kVp, tube current = 360 mAs/287 mAs, matrix = 512 × 512, slice thickness = 5 mm, spacing between slices = 5 mm, field of view = 350 mm × 350 mm, window level = 600 Hounsfield units (HU), and window width = 1.200 HU.

Clinical variables and the primary outcome

Clinical data were collected, including the clinical signs and symptoms (fever, headache, cough, expectoration, fatigue, dyspnea, nausea and vomiting, diarrhea, arthralgia, and myalgia), imaging results, demographic variables (age, sex, smoking status, and time between onset of symptoms to admission), and medical history (comorbidities, respiratory diseases, diabetes, hypertension, coronary artery disease, cerebrovascular disease, cancer, and chronic renal disease).

The primary endpoint in the study was efficacy in the predictions of death, clinical stage, and complications. Complications, including stroke, acute kidney injury, acute respiratory distress syndrome (ARDS), and heart failure, which appeared secondary to pneumonia, were defined as positive if the patient had one or more of these complications.

Image segmentation and blinding

All non-contrasted CT images were performed using ITK-SNAP software (version 2.2.0; www.itksnap.org) for manual segmentation of the regions of interest (ROIs). Since the presence of lesions interfered with the automatic identification of the chest, we manually delineated along the edge of the pulmonary parenchyma, slice by slice, for each patient. A three-dimensional ROI of the whole lung was then automatically generated by the software. The hilus pulmonis and the trachea were also included in the ROI (Figure 1). All the images were evaluated by two experienced radiologists who were blinded to the patients' clinical information (Ran-ying Zhang, Reader 1, with seven years of radiologist experience; Ting Yao, Reader 2, with four years of experience).

Radiomic signature building

Figure 1 demonstrates our workflow. The radiomic features were extracted from each ROI using PyRadiomics on Python (version 3.7).¹⁰ Before extraction, all the chest CT images were subjected to image normalization (the intensity of the image was scaled to 0-500). During the normalization process, the binwidth was set to 25, and the intensity of the image of from 1 to 25 bin, 26 to 50, 51 to 75 and so on was regarded as the same intensity in avoid of diversity due to the different parameter setting of CT machine and personal difference. Then, the normalized image was resampled to the same resolution $(1 \text{ mm} \times 1 \text{ mm} \times 1 \text{ mm})$ using the interpolation method of sitkBSpline to avoid any

Figure 1. Schematic diagram of the proposed workflow. ICC, inter-class correlation coefficient.

possible data heterogeneity. This procedure was followed by a filtering process to implement image smoothing. After filtering, the radiomic features were extracted from the ROI of the original image and its corresponding filtered results, which included features of first-order statistics, shape, grey-level co-occurrence matrix, grey-level run-length matrix, grey-level size-zone matrix, gray-level dependence matrix, and wavelet features.

The radiomic features of all patients were standardized using the z-score method. Intra-/inter-class correlation coefficients (ICCs) were calculated for each extracted radiomic feature, and those with ICCs of >0.8 were selected. In addition, we calculated the P value of the paired t-test for radiomic features with ICCs of >0.8. We chose the least absolute shrinkage and selection operator (LASSO) algorithm to complete the radiomic signature building and form radiomic models with features of non-zero regression coefficients. Each endpoint (stage, death, complication, respiratory failure) had a corresponding model. In total, four radiomic models were constructed to predict the occurrence of the endpoints.

To build a predictive radiomics model for each outcome, we followed several steps. First, the method of normalization to z distribution [(value - mean value)/standard deviation] was applied for each extracted feature. Second, the ICCs were calculated for each extracted radiomic feature, and those with ICCs of >0.8 were selected. Third, the LASSO algorithm was applied for further feature reduction. The most significant features with the smallest deviance were then selected using the LASSO algorithm for the final features. The LASSO algorithm is a penalized regression method that has been successfully applied to oncologic research. The LASSO algorithm can estimate the regression coefficients by maximizing the log-likelihood function (or the sum of squared residuals) with the constraint, reduce the coefficients of indistinctive covariates to zero, and enable the non-zero features to be combined into a radiomics model.^{11,12} With this model, the risk score for each patient was calculated using the following formula weighted by regression coefficients for each outcome: risk score = $constant + coefficients \times features.$

Statistical analysis

The predictive accuracy of the radiomic signature was evaluated using a receiver operating characteristic curve analysis. To determine the optimal cut-off value to pre-

dict each outcome, the Youden index was calculated for all possible cut-off values (c) [(Youden index = maxc (sensitivity + specificity – 1)],¹³ and the value of c that achieves the maximized index was considered optimal. For each model, the accuracy, sensitivity, and specificity were also measured using the defined optimal cut-off values. For internal validation, the corrected area under the curve (AUC) was calculated using bootstrapping validation (1,000 bootstrap resamples).¹⁴ In addition, a decision curve analysis (DCA) was performed to evaluate the clinical usefulness of the radiomic signature by guantifying the net benefit at different threshold probabilities.15

To explore the clinical utility of the addition of a radiomics signature for each outcome to the models with only clinical data included, we first constructed the clinical model using stepwise backward regression. We initially included the demographics of patients, their symptoms, and their past medical history by calculating the AUC for each outcome. Then, the AUC was calculated for the mixed models by including the clinical models and radiomics signature. Meanwhile, the net reclassification index (NRI), an alternative to AUC to assess the improvement in risk prediction and measure the usefulness of a new model,¹⁶ was calculated to evaluate the clinical benefits and utility of the mixed models compared with the clinical models. A statistical analysis was performed using R software (version 3.5.0, packages: irr, caret, glmnet, caTools, OptimalCutpoints, rms, rmda), and P < 0.05 was considered statistically significant.17

Results

Patient characteristics

We collected data from 157 patients in Wuhan Leishenshan Hospital between February 19, 2020, and April 10, 2020. The mean (standard deviation) age of these patients was 63.13 (14.14), and 86 of them were women (55.13%). At hospital admission, 59 patients were severe, and 25 patients had severe complications. The overall mortality was 6.3% (Table 1).

Feature selection and radiomic signature building

For each ROI, a total of 833 quantitative features were extracted. Using an ICC of 0.80 as a cut-off for determining good reproducibility, a total of 257 radiomic features were selected for the next assessment. As shown in Supplementary Table 1, almost all the *P* values of the paired t-test for radiomic features for all 257 radiomic features were larger than 0.05. After applying the LASSO logistic algorithm, 60 radiomic features were used to develop all the radiomic models.

As shown in Table 2, the AUC of each model demonstrated good predictive accuracy (death model, 0.846; stage model, 0.918; complications model, 0.919; ARDS model, 0.852). After finding the optimal cut-off for each outcome, the respective accuracy, sensitivity, and specificity were 0.854, 0.700, and 0.864 for the prediction of death of CO-VID-19 patients; 0.814, 0.949, and 0.732 for the prediction of higher-stage COVID-19; 0.846, 0.920, and 0.832 for the prediction of complications of COVID-19 patients; and 0.814, 0.818, and 0.814 for ARDS of COVID-19 patients. The AUCs after bootstrapping were 0.846 for the death prediction model, 0.919 for the stage prediction model, 0.919 for the complications prediction model, and 0.853 for the ARDS prediction model in the internal validation, which indicates that the models were stable. The DCA for the four radiomic models with different endpoints is presented in Figure 2 and shows good performance in terms of clinical application.

We next explored the clinical utility of the addition of the radiomics signature for each outcome to the models with only clinical data included. As shown in Table 3, the AUCs of the clinical models were 0.728, 0.952, 0.726, and 0.861 for the higher stage, death, complications, and ARDS prediction models, respectively. After combining the radiomics signatures and clinical parameters, the AUCs of the mixed models were 0.925, 0.990, 0.929, and 0.903 for the higher stage, death, complications, and ARDS prediction models, respectively. The AUCs of the mixed models were higher than the clinical models. In addition, a significantly increased NRI (stage: *P* < 0.001; death: *P* = 0.013; complications: *P* < 0.001; ARDS: *P* < 0.001) was found for the mixed models compared with the clinical models.

Discussion

In this study, we described a prediction model for COVID-19 based on radiomic signatures. Based on the first CT scan after hospitalization, we can predict the prognosis of these patients early with high accuracy and intervene where necessary.

COVID-19 can influence several tissues and lead to organ failure rapidly. It has a poor prognosis and a high mortality rate. A

chest CT combined with a positive molecular PCR test is the most important diagnostic method for COVID-19. Compared with tests conducted in standard laboratories, the CT scan procedure has a faster turnaround time and can provide more detailed information regarding lung damage severity and acute respiratory failure.^{18,19} Features of CT images can present with ground-glass opacities, linear opacities, consolidation, bronchial wall thickening, lymph node enlargement, pericardial effusion, or pleural effusion. However, the CT characteristics in some stages are somewhat similar, such as in severe and critical cases. Therefore, a single qualitative radiological diagnosis cannot fully meet our needs to predict the prognosis of the disease. Radiomics features can quantitatively reflect the invisible details of the lesions. First-order features (e.g., entropy, skewness, and kurtosis) describe the distribution of the values of individual voxels without concern for spatial relationships. Second-order (texture) features describe the statistical interrelationships

Table 1. Clinical characteristics						
Characteristics	Overall	Survival cases	Death cases			
Sex, n (%)						
Female	86 (55.13)	81 (55.1)	5 (55.56)			
Male	70 (44.87)	66 (44.9)	4 (44.44)			
Age, mean (SD)	63.13 (14.14)	62.44 (14.14)	74.56 (8.35)			
Smoking						
No	145 (94.16)	138 (93.88)	7 (100)			
Yes	9 (5.84)	9 (6.12)	0 (0)			
Clinical symptoms						
Fever, n (%)	96 (62.34)	92 (62.59)	4 (57.14)			
Cough, n (%)	98 (63.64)	93 (63.27)	5 (71.43)			
Chest pain, n (%)	40 (25.97)	37 (25.17)	3 (42.86)			
Hypodynamia (%)	75 (48.7)	73 (49.66)	2 (28.57)			
Diarrhea, n (%)	15 (9.74)	15 (10.2)	0 (0)			
Comorbidities						
Diabetes, n (%)	35 (22.73)	34 (23.13)	1 (14.29)			
HTN, n (%)	76 (49.35)	72 (48.98)	4 (57.14)			
Respiratory diseases, n (%)	14 (9.09)	13 (8.84)	1 (14.29)			
Heart diseases, n (%)	28 (18.3)	28 (19.18)	0 (0)			
Tumors, n (%)	6 (3.9)	5 (3.4)	1 (14.29)			
Stage, n (%)						
Mild	97 (62.18)	97 (65.99)	0 (0)			
Severe	59 (37.82)	50 (34.01)	9 (100)			
Complication, n (%)						
No	131 (83.97)	130 (88.44)	1 (11.11)			
Yes	25 (16.03)	17 (11.56)	8 (88.89)			
Respiratory failure, n (%)	19 (12.18)	13 (8.84)	6 (66.67)			
ARDS, n (%)	11 (7.05)	5 (3.4)	6 (66.67)			
Heart failure, n (%)	7 (4.49)	5 (3.4)	2 (22.22)			
AKI, n (%)						
0	143 (91.67)	139 (94.56)	4 (44.44)			
1	7 (4.49)	3 (2.04)	4 (44.44)			
2	2 (1.28)	2 (1.36)	0 (0)			
3	4 (2.56)	3 (2.04)	1 (11.11)			
WBC, median (Q1, Q3)	5.92 (4.71, 7.29)	5.91 (4.7, 7.17)	6.48 (5.08, 10.36)			
CRP, median (Q1, Q3)	2.91 (0.5, 19.66)	2.37 (0.5, 15.18)	40 (22.22, 108.8)			
Lymphocyte, median (Q1, Q3)	1.33 (0.84, 1.75)	1.37 (0.88, 1.75)	0.54 (0.19, 0.72)			
Time between onset of symptoms to admission, median (Q1, Q3)	22 (15, 30)	22 (15.5, 30.5)	20 (13, 23.75)			
AKI, acute kidney injury; SD, standard deviation; WBC, white blood cells; CRP, C-reactive protein; ARDS, acute respiratory distress syndrome; HTN, hypertension.						

between voxels with similar (or dissimilar) contrast values. Higher-order statistical methods impose filter grids on the image to extract repetitive or non-repetitive patterns. For instance, among the final selected features, firstorder_10Percentile indicated the 10th percentile of intensity in the ROI, which may reflect the relationship between the density of lesions and the disease grade.

Several studies on CT radiomics and the deep-learning technique have shown the efficiency of a rapid diagnosis of COVID-19. In a large cohort of 3,777 patients, the artificial intelligence diagnostic model can differentiate NCP from other common pneumonia with 92.49% accuracy, 94.93% sensitivity, 91.13% specificity, and an area under the ROC curve of 0.9797.6 Another deep-learning artificial intelligence-enabled rapid diagnosis system also showed a clinical benefit. However, studies focusing on prognosis prediction using quantitative image features are rare. Our research was the first study to investigate the role of CT radiomics in predicting the prognosis of patients with COVID-19. The AUCs of each model demonstrated good predictive accuracy (0.85–0.92). The DCA also indicated

a good performance in terms of clinical application.

Several retrospective cohort studies have described the multi-organ damage caused by COVID-19, including respiratory, cardiovascular, digestive, urinary, endocrine, and nervous system damage.^{20,21} Accurate predictive models are needed to identify the risk of patients experiencing a poor clinical outcome and plan early intervention to improve outcomes. Previous studies have found several variables that are risk factors for a severe prognosis related to COVID-19 and have built effective prediction models for patient management.^{22,23} The following factors contain comprehensive clinical data: chest radiography abnormality, age, interleukin-6, dyspnea, number of comorbidities, cancer history, lower lymphocyte count, higher lactate dehydrogenase neutrophil-to-lymphocyte ratio, lactate dehydrogenase, creatinine, and direct bilirubin. However, these data rely on large data collection samples and patient follow ups for the entire study, which might lead to economic issues. In our preliminary study, the first CT image on arrival at the medical center could bring us more infor-

mation than chest lesions. An important advancement in the use of imaging is assisting clinical management in identifying high-risk groups and intervening early to reduce mortality. However, the lack of widely used CT scanning equipment and experienced radiologists might affect the clinical application of these prediction models. Similar to previous research, the data models used in the present research relied on accurate labeling by professional radiologists. Moreover, the clinical characteristics and outcomes were estimated by the expert radiologists for the description of the state of the patient but did not consider the real severity.⁵ One limitation of this study is the small sample size for validation and the use of patients in the same country, which could cause bias. This retrospective study could also contain missing data. Additional prospective global multi-center validation studies of COVID-19 are recommended.

In conclusion, the radiomic signature provided vital information for predicting the prognosis of COVID-19. We built a model consisting of a radiomic signature that had maximum accuracy in the prediction of the

Figure 2. Predictive accuracy of the radiomic signature, as evaluated by the Harrell's C-index. (a) Predictive value for death; (b) predictive value for stage; (c) predictive value for complications; (d) predictive value for acute respiratory distress syndrome.

lable 2. AUC and NRI	with the corresponding	P value of the cl	linical models a	and mixed i	models for j	predicting th	ne outcome a	nd NRI va	alue to
compare COVID-19 pa	atients								
	ALLC for the clinical model	(SE 05% CI)	ALLC for the r	nived model		NDI	D		

	Abe for the childer fidder (SE, 55% Cl)	Abe for the finked findels (SE, 55% Cf)	INIA	/ Value
Stage	0.728 (0.042, 0.646- 0.809)	0.925 (0.020, 0.885-0.966)	1.34	<0.001
Death	0.952 (0.018, 0.917-0.986)	0.990 (0.019, 0.953-1.000)	0.280	0.013
Complications	0.726 (0.056, 0.616-0.836)	0.929 (0.043, 0.844-0.969)	1.064	<0.001
ARDS	0.861 (0.058, 0.748-0.975)	0.903 (0.060, 0.786-1.000)	0.787	<0.001

¹P < 0.05 indicated the calculated NRI was statistically significant. AUC, area under curve; SE, standard error; CI, confidence interval; NRI, net reclassification index; ARDS, acute respiratory distress syndrome; COVID-19, coronavirus disease-2019.

Table 3. Efficacy of the radiomic signature in the prediction of the outcome						
Outcome	Harrell's C-index	C-index after bootstrap (95% CI)	Accuracy	Sensitivity	Specificity	
Stage	0.918	0.919 (0.917–0.922)	0.814	0.949	0.732	
Death	0.846	0.846 (0.844–0.848)	0.854	0.700	0.864	
Complications	0.919	0.919 (0.916–0.921)	0.846	0.920	0.832	
ARDS	0.852	0.853 (0.852–0.855)	0.814	0.818	0.814	

CI, confidence interval; ARDS, acute respiratory distress syndrome.

prognosis. Our study provided vital insight into important preoperative clinical decisions and is expected to be applied in multiple medical centers to optimize future diagnoses and treatments.

Conflict of interest disclosure

The authors declared no conflicts of interest.

Funding

This study was supported by Shanghai Science and Technology Commission Clinical Research Project (grant number: 19411951500); Shanghai Sailing Program (grant no. 20YF1436300).

References

- Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. [CrossRef]
- Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 2021;23(1):14. [CrossRef]
- Wei W, Hu XW, Cheng Q, Zhao YM, Ge YQ. Identification of common and severe COVID-19: the value of CT texture analysis and correlation with clinical characteristics. *Eur Radiol*. 2020;30(12):6788-6796. [CrossRef]
- Fang X, Kruger U, Homayounieh F, et al. Association of Al quantified COVID-19 chest CT and patient outcome. *Int J Comput Assist Radiol Surg.* 2021;16(3):435-445. [CrossRef]
- Biondi R, Curti N, Coppola F, et al. Classification performance for COVID patient prognosis from automatic AI segmentation--a singlecenter study. *Appl Sci.* 2021; 11(12):5438. [CrossRef]
- Zhang K, Liu X, Shen J, et al. Clinically applicable Al System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 pneumonia using computed tomography. *Cell*. 2020;181(6):1423-1433. [CrossRef]

- Huang P, Liu T, Huang L, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. *Radiology*. 2020;295(1):22-23. [CrossRef]
- Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumourinfiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. *Lancet Oncol.* 2018;19(9):1180-1191. [CrossRef]
- Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. *Nat Rev Clin Oncol.* 2017;14(12):749-762. [CrossRef]
- van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. *Cancer Res.* 2017;77(21):104-107. [CrossRef]
- Zhang QW, Gao YJ, Zhang RY, et al. Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort. *Clin Transl Med.* 2020;9(1):12. [CrossRef]
- Zhang QW, Zhou XX, Zhang RY, et al. Comparison of malignancy-prediction efficiency between contrast and noncontract CT-based radiomics features in gastrointestinal stromal tumors: a multicenter study. *Clin Transl Med.* 2020;10(3):e291. [CrossRef]
- Fluss R, Faraggi D, Reiser B. Estimation of the Youden index and its associated cutoff point. *Biom J.* 2005;47(4):458-472. [CrossRef]
- Smith PJ, Hoaglin DC, Battaglia MP, Barker L, et al. Implementation and applications of bootstrap methods for the National Immunization Survey. *Stat Med.* 2003;22(15): 2487-2502. [CrossRef]
- Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. *BMJ*. 2016;352:i6. [CrossRef]

- Uno H, Tian L, Cai T, Kohane IS, Wei LJ. A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. *Stat Med*. 2013;32(14):2430-2442. [CrossRef]
- De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B. mRMRe: an R package for parallelized mRMR ensemble feature selection. *Bioinformatics*. 2013;29(18):2365-2368. [CrossRef]
- Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. *Lancet Infect Dis.* 2020;20(4):425-434.
 [CrossRef]
- Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med.* 2020;8(5):475-481.
 [CrossRef]
- 20. Wu C, Chen X, Cai Y et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. [CrossRef]
- 21. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. [CrossRef]
- Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020;180(8):1081-1089. [CrossRef]
- 23. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet*. 2020;395(10229):1054-1062. [CrossRef]

Supplementary Table 1. Results of paired samples t-test and interclass or intraclass correlation coefficient calculations for radiomics paramaters

	Inter-class correlation coefficients		Paired samples t-test	
Paramater	Same researcher at different time	Different researcher at same time	Same researcher at different time	Different researcher at same time
original_firstorder_10Percentile	0.999997	0.998569	0.340784	0.89771
original_firstorder_90Percentile	0.931262	0.912729	0.077749	0.29402
original_firstorder_Energy	0.981199	0.951514	0.104202	0.77724
original_firstorder_Entropy	0.976015	0.86105	0.081715	0.773565
original_firstorder_InterquartileRange	0.970405	0.894157	0.211248	0.899302
original_firstorder_Kurtosis	0.804423	0.816997	0.027186	0.150026
original_firstorder_Mean	0.998257	0.996387	0.09966	0.616588
original_firstorder_MeanAbsoluteDeviation	0.956756	0.854623	0.071953	0.490757
original_firstorder_Median	0.999905	0.998343	0.33764	0.579896
original_firstorder_Minimum	0.999795	0.970584	0.305204	0.994862
original_firstorder_Range	0.985947	0.881659	0.259128	0.710139
$original_first order_RobustMeanAbsoluteDeviation$	0.947647	0.876259	0.126852	0.726577
original_firstorder_RootMeanSquared	0.997488	0.993777	0.091024	0.565349
original_firstorder_Skewness	0.902097	0.93577	0.040829	0.369576
original_firstorder_TotalEnergy	0.981199	0.951514	0.104202	0.77724
original_firstorder_Uniformity	0.989356	0.818425	0.067482	0.994303
original_firstorder_Variance	0.981203	0.847101	0.09128	0.458786
original_glcm_Autocorrelation	0.986151	0.892283	0.2128	0.902616
original_glcm_ClusterProminence	0.989671	0.893246	0.29526	0.433852
original_glcm_ClusterShade	0.988522	0.890284	0.208842	0.379651
original_glcm_ClusterTendency	0.981285	0.869552	0.094478	0.477418
original_glcm_Contrast	0.99549	0.803835	0.10815	0.531676
original_glcm_DifferenceVariance	0.994748	0.807939	0.09233	0.53265
original_glcm_JointAverage	0.993272	0.825104	0.121628	0.937817
original_glcm_SumEntropy	0.978179	0.89127	0.077978	0.793367
original_glcm_SumSquares	0.983116	0.864382	0.094545	0.479741
original_gldm_DependenceEntropy	0.976726	0.853071	0.073941	0.817061
original_gldm_GrayLevelNonUniformity	0.998773	0.872752	0.049065	0.957319
original_gldm_GrayLevelVariance	0.981222	0.847155	0.091383	0.458466
original_gldm_HighGrayLevelEmphasis	0.985763	0.887965	0.200588	0.850271
$original_gldm_SmallDependenceHighGrayLevelEmphasis$	0.990101	0.899873	0.247325	0.48425
original_glrlm_GrayLevelNonUniformityNormalized	0.919503	0.939251	0.064681	0.603984
original_glrlm_GrayLevelVariance	0.980288	0.868816	0.071361	0.478433
original_glrlm_HighGrayLevelRunEmphasis	0.983907	0.90651	0.149272	0.851096
original_glrlm_LongRunHighGrayLevelEmphasis	0.973192	0.899739	0.316009	0.928954
original_glrlm_ShortRunHighGrayLevelEmphasis	0.983982	0.905354	0.144339	0.790248
original_glszm_GrayLevelNonUniformity	0.997252	0.828012	0.138214	0.565119
original_glszm_GrayLevelVariance	0.993678	0.816953	0.076984	0.464003
original_glszm_HighGrayLevelZoneEmphasis	0.987263	0.926078	0.107404	0.683375
original_glszm_SizeZoneNonUniformity	0.997713	0.887896	0.052518	0.378143
$original_glszm_SizeZoneNonUniformityNormalized$	0.995576	0.968844	0.954024	0.794447
original_glszm_SmallAreaEmphasis	0.994757	0.960487	0.825246	0.867285
$original_glszm_SmallAreaHighGrayLevelEmphasis$	0.990794	0.93481	0.132973	0.643441
original_glszm_ZonePercentage	0.996098	0.822963	0.090173	0.608169
original_ngtdm_Complexity	0.996361	0.872722	0.377178	0.592898

Supplementary Table 1. Continues						
	Inter-class correl	ation coefficients	Paired s	Paired samples t-test		
Paramater	Same researcher at different time	Different researcher at same time	Same researcher at different time	Different researcher at same time		
original_shape_Flatness	0.990597	0.82496	0.250526	0.609563		
original_shape_LeastAxisLength	0.99722	0.943945	0.314855	0.662473		
original_shape_MajorAxisLength	0.999914	0.995239	0.04126	0.453035		
original_shape_Maximum2DDiameterColumn	0.997574	0.979956	0.121475	0.595147		
original_shape_Maximum2DDiameterSlice	0.999441	0.997251	0.221079	0.093845		
original_shape_Maximum3DDiameter	0.990835	0.933314	0.523592	0.572199		
original_shape_MeshVolume	0.992537	0.979207	0.094729	0.745679		
original_shape_MinorAxisLength	0.993714	0.987656	0.183195	0.787999		
original_shape_Sphericity	0.993593	0.963324	0.863871	0.437983		
original_shape_SurfaceArea	0.991339	0.967048	0.102698	0.902472		
original_shape_SurfaceVolumeRatio	0.99673	0.97189	0.207659	0.89069		
original_shape_VoxelVolume	0.992549	0.97913	0.095193	0.747323		
wavelet.HHH_firstorder_Energy	0.992533	0.978802	0.091866	0.74983		
wavelet.HHH_firstorder_Entropy	0.9976	0.853074	0.339822	0.570975		
wavelet.HHH_firstorder_Kurtosis	0.987216	0.943184	0.108393	0.801723		
wavelet.HHH_firstorder_Mean	0.956551	0.870222	0.07011	0.988223		
wavelet.HHH_firstorder_RootMeanSquared	0.983791	0.881095	0.070903	0.634193		
wavelet.HHH firstorder TotalEnergy	0.992533	0.978802	0.091866	0.74983		
wavelet.HHH_firstorder_Uniformity	0.996915	0.867726	0.340438	0.575115		
wavelet.HHH glcm SumSquares	0.996365	0.873037	0.333482	0.578942		
wavelet.HHH gldm DependenceNonUniformity	0.993546	0.903916	0.093858	0.592758		
wavelet.HHH gldm GravLevelNonUniformity	0.992541	0.979206	0.095415	0.750379		
wavelet.HHH gldm GravLevelVariance	0.997083	0.872956	0.340921	0.589302		
wavelet.HHH glrlm GravLevelNonUniformity	0.992771	0.952948	0.09509	0.663165		
wavelet.HHH glrlm GravLevelNonUniformityNormalized	0.997063	0.868934	0.28946	0.565452		
wavelet.HHH glrlm GravLevelVariance	0.997263	0.875035	0.327481	0.584239		
wavelet.HHH glrlm RunLengthNonUniformity	0.993162	0.909943	0.09408	0.606215		
wavelet HHH_glszm_Gravl evelNonUniformity	0.997211	0.924464	0.1783	0.501813		
wavelet HHH_glszm_SizeZoneNonUniformity	0.994287	0.898315	0.614822	0.517346		
wavelet HHH glszm ZonePercentage	0.994332	0.890479	0.582649	0.498157		
wavelet.HHH_ngtdm_Coarseness	0.995103	0.922732	0.295053	0.577228		
wavelet.HHI firstorder Energy	0.992573	0.97842	0.095536	0.752877		
wavelet.HHI firstorder Kurtosis	0.995111	0.934285	0.128894	0.58736		
wavelet.HHI firstorder Mean	0.958346	0.983521	0.061073	0.284902		
wavelet.HHI_firstorder_TotalEnergy	0.992573	0.97842	0.095536	0.752877		
wavelet.HHI glcm ClusterProminence	0.995852	0.826601	0.386051	0.81669		
wavelet HHL gldm_SmallDependenceHighGravLevelEmphasis	0.999973	0.869799	0 37208	0.478685		
wavelet HHL notdm Coarseness	0.997978	0.818081	0.373987	0.668612		
wavelet HHL_ngtdm_complexity	0.999973	0.836216	0.90023	0.613464		
wavelet HLH_firstorder_Energy	0.992497	0.978972	0.09724	0.760804		
wavelet HI H firstorder_Energy	0.812382	0.841375	0.254883	0.913161		
wavelet HI H, firstorder, TotalEnergy	0.002407	0.078072	0.00724	0.760804		
wavelet HI H firstorder Variance	0.000676	0.970972	0.309301	0.523766		
wavelet HI H olcm ClusterProminence	0.007013	0.064836	0.25710	0.10152		
wavelet HI H olcm DifferenceVariance	0.998513	0.808758	0.731429	0.454816		
matericanica	0.00015	0.000750	0.751725	0.01010		

Supplementary Table 1. Continues						
	Inter-class correlation coefficients		Paired samples t-test			
Paramater	Same researcher at different time	Different researcher at same time	Same researcher at different time	Different researcher at same time		
wavelet.HLH_gldm_GrayLevelNonUniformity	0.992458	0.980414	0.096699	0.831004		
wavelet.HLH_gldm_GrayLevelVariance	0.998752	0.851739	0.347758	0.344964		
$wavelet. HLH_gldm_LargeDependenceHighGrayLevelEmphasis$	0.999988	0.809386	0.543159	0.65892		
$wavelet. HLH_gldm_SmallDependenceHighGrayLevelEmphasis$	0.999972	0.825346	0.581967	0.565302		
wavelet.HLH_glrlm_GrayLevelNonUniformity	0.994352	0.85521	0.095236	0.699494		
wavelet.HLH_glrlm_GrayLevelVariance	0.998828	0.860282	0.385184	0.343714		
$wavelet. HLH_glszm_SizeZoneNonUniformity$	0.998773	0.827246	0.048067	0.326173		
$wavelet. HLH_glszm_SmallAreaHighGrayLevelEmphasis$	0.984661	0.803754	0.267622	0.857598		
wavelet.HLH_glszm_ZonePercentage	0.996543	0.810394	0.135219	0.334475		
wavelet.HLH_ngtdm_Coarseness	0.995668	0.836895	0.215283	0.564965		
wavelet.HLH_ngtdm_Complexity	0.999999	0.815922	0.710351	0.649103		
wavelet.HLH_ngtdm_Strength	0.999796	0.918313	0.395136	0.77281		
wavelet.HLL_firstorder_Energy	0.992859	0.978	0.091609	0.727026		
wavelet.HLL_firstorder_Mean	0.970284	0.962328	0.091242	0.299141		
wavelet.HLL_firstorder_Median	0.988699	0.949159	0.294879	0.531518		
wavelet.HLL_firstorder_RootMeanSquared	0.997913	0.896491	0.076846	0.689229		
wavelet.HLL_firstorder_TotalEnergy	0.992859	0.978	0.091609	0.727026		
wavelet.HLL_glcm_ldn	0.999305	0.895923	0.41531	0.670298		
wavelet.HLL_glrlm_GrayLevelNonUniformity	0.997355	0.830152	0.114151	0.692293		
wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis	0.959884	0.801546	0.146286	0.490789		
wavelet.HLL_ngtdm_Coarseness	0.998071	0.920443	0.450353	0.670578		
wavelet.LHH_firstorder_Energy	0.992543	0.978972	0.10106	0.760804		
wavelet.LHH_firstorder_Entropy	0.999483	0.858038	0.397848	0.461672		
wavelet.LHH_firstorder_Kurtosis	0.986817	0.936929	0.068087	0.951105		
wavelet.LHH_firstorder_Mean	0.983004	0.963404	0.965327	0.384285		
wavelet.LHH_firstorder_Median	0.837757	0.883881	0.883249	0.7669		
wavelet.LHH_firstorder_RootMeanSquared	0.969978	0.840774	0.990503	0.404368		
wavelet.LHH_firstorder_TotalEnergy	0.992543	0.978972	0.10106	0.760804		
wavelet.LHH_firstorder_Uniformity	0.99912	0.871824	0.258251	0.448879		
wavelet.LHH_firstorder_Variance	0.999802	0.816434	0.245848	0.586159		
wavelet.LHH_glcm_ClusterProminence	0.998194	0.848527	0.221417	0.523894		
wavelet.LHH_glcm_DifferenceEntropy	0.99955	0.838622	0.935167	0.642927		
wavelet.LHH_glcm_DifferenceVariance	0.999334	0.879789	0.960564	0.655147		
wavelet.LHH_glcm_JointEntropy	0.999484	0.854578	0.663912	0.515146		
wavelet.LHH_glcm_SumSquares	0.999241	0.889891	0.399138	0.42814		
wavelet.LHH_gldm_DependenceNonUniformity	0.993966	0.900768	0.102525	0.710826		
wavelet.LHH_gldm_GrayLevelNonUniformity	0.992463	0.979784	0.09628	0.788401		
wavelet.LHH_gldm_GrayLevelVariance	0.999191	0.884752	0.349828	0.435273		
$wave let. {\sf LHH_gldm_LargeDependenceHighGrayLevelEmphasis}$	0.98298	0.83397	0.338624	0.63401		
wavelet.LHH_glrlm_GrayLevelNonUniformity	0.994184	0.840796	0.099308	0.662251		
$wavelet. LHH_glrlm_Gray Level Non Uniformity Normalized$	0.999397	0.878896	0.371097	0.426207		
wavelet.LHH_glrlm_GrayLevelVariance	0.999255	0.887979	0.392979	0.429678		
wavelet.LHH_glrlm_LongRunHighGrayLevelEmphasis	0.980785	0.813507	0.338373	0.630056		

Supplementary Table 1. Continues					
	Inter-class correl	ation coefficients	Paired samples t-test		
Paramater	Same researcher at different time	Different researcher at same time	Same researcher at different time	Different researcher at same time	
wavelet.LHH_glszm_ZonePercentage	0.999538	0.88587	0.805809	0.328586	
wavelet.LHH_ngtdm_Coarseness	0.994722	0.827216	0.254063	0.579548	
wavelet.LHH_ngtdm_Complexity	0.998412	0.862594	0.344281	0.54478	
wavelet.LHH_ngtdm_Strength	0.999182	0.950617	0.518519	0.698336	
wavelet.LHL_firstorder_Energy	0.992982	0.977993	0.09054	0.737466	
wavelet.LHL_firstorder_Kurtosis	0.985251	0.960151	0.21718	0.576139	
wavelet.LHL_firstorder_Mean	0.989189	0.975507	0.206571	0.432871	
wavelet.LHL_firstorder_Median	0.993039	0.960395	0.381912	0.757776	
wavelet.LHL_firstorder_RootMeanSquared	0.998785	0.900936	0.269623	0.919027	
wavelet.LHL_firstorder_TotalEnergy	0.992982	0.977993	0.09054	0.737466	
wavelet.LHL_glcm_ClusterProminence	0.999094	0.821714	0.481395	0.962621	
wavelet.LHL_glcm_ldn	0.988052	0.829679	0.243423	0.301559	
wavelet.LHL_glcm_Imc2	0.921777	0.884274	0.075303	0.464799	
$wavelet. {\sf LHL_gldm_SmallDependenceHighGrayLevelEmphasis}$	0.999981	0.922039	0.10615	0.917856	
wavelet.LHL_glrlm_LongRunHighGrayLevelEmphasis	0.994766	0.829221	0.123789	0.630026	
wavelet.LHL_glrlm_RunEntropy	0.992932	0.814147	0.077034	0.935768	
wavelet.LHL_glszm_SmallAreaHighGrayLevelEmphasis	0.99991	0.819829	0.10075	0.814189	
wavelet.LHL_ngtdm_Coarseness	0.997763	0.907867	0.34602	0.687538	
wavelet.LHL_ngtdm_Complexity	0.999964	0.847661	0.353431	0.842677	
wavelet.LLH_firstorder_10Percentile	0.978338	0.861756	0.2552	0.586535	
wavelet.LLH_firstorder_90Percentile	0.999921	0.972858	0.911368	0.826339	
wavelet.LLH_firstorder_Energy	0.992656	0.979233	0.092076	0.736285	
wavelet.LLH_firstorder_Entropy	0.999675	0.971114	0.1583	0.572401	
wavelet.LLH_firstorder_InterquartileRange	0.998833	0.951668	0.278588	0.684967	
wavelet.LLH_firstorder_Kurtosis	0.955345	0.956023	0.115104	0.195984	
wavelet.LLH_firstorder_Maximum	0.999904	0.952952	0.167866	0.55534	
wavelet.LLH_firstorder_Mean	0.957527	0.906466	0.352751	0.642735	
wavelet.LLH_firstorder_MeanAbsoluteDeviation	0.999102	0.954881	0.228338	0.698042	
wavelet.LLH_firstorder_Median	0.965658	0.885736	0.730984	0.925662	
wavelet.LLH_firstorder_Minimum	0.999988	0.806223	0.343436	0.397651	
wavelet.LLH_firstorder_Range	0.999979	0.912403	0.085281	0.639698	
wavelet.LLH_firstorder_RobustMeanAbsoluteDeviation	0.99889	0.95315	0.286438	0.677357	
wavelet.LLH_firstorder_RootMeanSquared	0.964063	0.922758	0.354273	0.655446	
wavelet.LLH_firstorder_TotalEnergy	0.992656	0.979233	0.092076	0.736285	
wavelet.LLH_firstorder_Uniformity	0.998027	0.963139	0.227154	0.554834	
wavelet.LLH_firstorder_Variance	0.999634	0.96951	0.221421	0.474875	
wavelet.LLH_glcm_ClusterProminence	0.999958	0.979225	0.339388	0.321153	
wavelet.LLH_glcm_ClusterShade	0.992615	0.979219	0.901948	0.909563	
wavelet.LLH_glcm_ClusterTendency	0.999786	0.986402	0.282204	0.274228	
wavelet.LLH_glcm_DifferenceVariance	0.999782	0.803254	0.249572	0.697979	
wavelet.LLH_glcm_ldmn	0.999972	0.800171	0.330608	0.226989	
wavelet.LLH_glcm_ldn	0.999875	0.949396	0.299252	0.042735	
wavelet.LLH_glcm_JointEnergy	0.999321	0.803753	0.252054	0.908083	
wavelet.LLH_glcm_JointEntropy	0.999815	0.929506	0.172814	0.723083	
wavelet.LLH_glcm_SumEntropy	0.999791	0.95771	0.186376	0.744586	

Supplementary Table 1. Continues						
	Inter-class correl	ation coefficients	Paired samples t-test			
Paramater	Same researcher at different time	Different researcher at same time	Same researcher at different time	Different researcher at same time		
$wavelet. LLH_gldm_DependenceNonUniformity$	0.989604	0.823667	0.121778	0.686674		
wavelet.LLH_gldm_DependenceVariance	0.990269	0.963407	0.354859	0.165496		
wavelet.LLH_gldm_GrayLevelNonUniformity	0.992945	0.984785	0.103752	0.779552		
wavelet.LLH_gldm_GrayLevelVariance	0.999734	0.973184	0.199483	0.380729		
wavelet.LLH_gldm_SmallDependenceEmphasis	0.995889	0.835482	0.263067	0.779956		
wavelet.LLH_glrlm_GrayLevelNonUniformityNormalized	0.999866	0.978885	0.213947	0.60723		
wavelet.LLH_glrlm_GrayLevelVariance	0.999868	0.979676	0.302364	0.418486		
wavelet.LLH_glszm_GrayLevelNonUniformity	0.945718	0.850553	0.034748	0.978811		
wavelet.LLH_glszm_GrayLevelVariance	0.970813	0.839983	0.113992	0.664453		
wavelet.LLH_glszm_SizeZoneNonUniformity	0.984696	0.855923	0.091929	0.844812		
wavelet.LLH_glszm_ZonePercentage	0.992001	0.912203	0.202902	0.849231		
wavelet.LLH_ngtdm_Complexity	1	0.833586	0.359565	0.608493		
wavelet.LLH_ngtdm_Strength	0.999846	0.810294	0.347613	0.332152		
wavelet.LLL_firstorder_10Percentile	0.999997	0.999439	0.301835	0.710013		
wavelet.LLL_firstorder_90Percentile	0.934659	0.923225	0.078896	0.281365		
wavelet.LLL_firstorder_Energy	0.972452	0.950174	0.106066	0.819672		
wavelet.LLL_firstorder_Entropy	0.974177	0.918957	0.083673	0.798059		
wavelet.LLL_firstorder_InterquartileRange	0.968017	0.912124	0.202452	0.847176		
wavelet.LLL_firstorder_Maximum	0.956997	0.815744	0.160508	0.566333		
wavelet.LLL_firstorder_Mean	0.998299	0.996389	0.099534	0.618757		
wavelet.LLL_firstorder_MeanAbsoluteDeviation	0.954272	0.872252	0.072324	0.453276		
wavelet.LLL_firstorder_Median	0.999906	0.998387	0.332724	0.550646		
wavelet.LLL_firstorder_Minimum	1	0.987012	1	0.879349		
wavelet.LLL_firstorder_Range	0.984956	0.927874	0.160508	0.659921		
wavelet.LLL_firstorder_RobustMeanAbsoluteDeviation	0.943418	0.896723	0.123869	0.697487		
wavelet.LLL_firstorder_RootMeanSquared	0.994469	0.985452	0.084579	0.524268		
wavelet.LLL_firstorder_Skewness	0.89596	0.952381	0.042098	0.292629		
wavelet.LLL firstorder TotalEnergy	0.972452	0.950174	0.106066	0.819672		
wavelet.LLL firstorder Uniformity	0.989123	0.896448	0.066958	0.736956		
wavelet.LLL firstorder Variance	0.979827	0.857975	0.091453	0.448699		
wavelet.LLL glcm Autocorrelation	0.99588	0.901572	0.113141	0.914279		
wavelet.LLL glcm ClusterProminence	0.988996	0.897991	0.295485	0.442857		
wavelet.LLL glcm ClusterShade	0.988002	0.892853	0.209302	0.383499		
wavelet.LLL_glcm_ClusterTendency	0.980493	0.875003	0.093982	0.470409		
wavelet.LLL_glcm_Contrast	0.993183	0.863679	0.100833	0.49317		
wavelet.LLL_glcm_DifferenceAverage	0.987753	0.818154	0.101494	0.668156		
wavelet.LLL glcm DifferenceVariance	0.993249	0.861779	0.087696	0.483506		
wavelet.LLL glcm InverseVariance	0.97276	0.811101	0.132027	0.502651		
wavelet.LLL glcm JointAverage	0.996637	0.88368	0.096733	0.894735		
wavelet.LLL glcm JointEntropy	0.983888	0.829103	0.090435	0.860867		
wavelet.LLL glcm SumEntropy	0.975198	0.941017	0.08001	0.772539		
wavelet.LLL glcm SumSquares	0.981578	0.874546	0.093701	0.470034		
wavelet.LLL gldm DependenceEntropy	0.95646	0.973771	0.072763	0.671473		
wavelet.LLL gldm DependenceNonUniformity	0.991417	0.837811	0.120744	0.520914		
wavelet.LLL_gldm_DependenceNonUniformityNormalized	0.996895	0.807106	0.240026	0.695228		

Supplementary Table 1. Continues				
	Inter-class correl	ation coefficients	Paired samples t-test	
Paramater	Same researcher at different time	Different researcher at same time	Same researcher at different time	Different researcher at same time
wavelet.LLL_gldm_HighGrayLevelEmphasis	0.994784	0.896677	0.115249	0.853046
$wave let. {\tt LLL_gldm_LargeDependenceHighGrayLevelEmphasis}$	0.993485	0.807918	0.61861	0.180537
wavelet.LLL_gldm_SmallDependenceEmphasis	0.97975	0.816085	0.122701	0.700424
$wavelet. {\tt LLL_gldm_SmallDependenceHighGrayLevelEmphasis}$	0.99369	0.903136	0.14232	0.508733
$wavelet. {\tt LLL_gldm_SmallDependenceLowGrayLevelEmphasis}$	0.999841	0.847811	0.492586	0.315844
wavelet.LLL_glrlm_GrayLevelNonUniformity	0.996362	0.998659	0.047327	0.478971
$wavelet. LLL_glrlm_GrayLevelNonUniformityNormalized$	0.972085	0.945134	0.063713	0.951928
wavelet.LLL_glrlm_GrayLevelVariance	0.979409	0.864066	0.081358	0.442235
$wavelet. {\tt LLL_glrlm_HighGrayLevelRunEmphasis}$	0.993533	0.905425	0.100201	0.810979
$wavelet. {\tt LLL_glrlm_LongRunHighGrayLevelEmphasis}$	0.994926	0.885049	0.11525	0.760629
wavelet.LLL_glrlm_RunEntropy	0.910947	0.982523	0.076571	0.296386
$wavelet. LLL_glrlm_ShortRunHighGrayLevelEmphasis$	0.993121	0.906709	0.101465	0.756248
wavelet.LLL_glszm_GrayLevelNonUniformity	0.994386	0.859811	0.384187	0.822736
wavelet.LLL_glszm_GrayLevelVariance	0.99037	0.868936	0.094182	0.45735
wavelet.LLL_glszm_HighGrayLevelZoneEmphasis	0.991484	0.921692	0.082135	0.635025
wavelet.LLL_glszm_LargeAreaHighGrayLevelEmphasis	0.968182	0.89771	0.043252	0.058174
wavelet.LLL_glszm_SizeZoneNonUniformity	0.985194	0.91284	0.066956	0.382645
$wavelet. LLL_glszm_SizeZoneNonUniformityNormalized$	0.981661	0.964778	0.077366	0.291391
wavelet.LLL_glszm_SmallAreaEmphasis	0.979067	0.96374	0.086227	0.322612
$wavelet. {\tt LLL_glszm_SmallAreaHighGrayLevelEmphasis}$	0.99303	0.926193	0.080552	0.571575
wavelet.LLL_glszm_ZonePercentage	0.975948	0.805756	0.132691	0.739583
wavelet.LLL_ngtdm_Coarseness	0.999928	0.810494	0.318255	0.507877
wavelet.LLL_ngtdm_Complexity	0.997228	0.910728	0.414899	0.626529
wavelet.LLL_ngtdm_Strength	0.979982	0.94111	0.509235	0.962508